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FOREWORD

This report is an interim technical report which summa-
T% rizes one phase of research being carried out at Purdue
é University in the area of communication theory under NASA

'% Grant NsG-553.

B The report deals with the problem of analog communica-

4 tion over a dispersive or multipath channel. This research

7y is closely related to the studies of Lindenlaub and Bailey,
"pigital Communication Systems Subject to Frequency Selective

i Fading," TR-EE67-17 and Hancock and Quincy, "Jointly Optimum

Waveforms and Receivers for Channels with Memory," TR-EE66-7

Dt e

which were also supported under this grant.
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ABSTRACT

The purpose of this research has been to investigate the
performance of demodulators for anaslog commnicstion over
slowly time=-varying, frequency selective fading channe;s.

Por known channels, demodulators optimel in the séense
of maxl.mm a~posteriorl probability are derived for linear
and angle modulation, but the resultant receiver structure
for non-linesr modulation is found to be impractical. A more
fruitful epproach considers optimal passband equalization of
the transmitted signal besed on minimum mean-square error.
The performasnce of the demodulator optimal in this sense is
investigated for certain exemples of physical interest; it is
found that selective fading causes an intrinsic loss In per-
formance reletive to non«-fading’ channels, and thet the length
of the demodulator observation interval, directly related to
system complexity, is a limiting factor whenever fading is
severe.

Suboptimsl epproximations to the optimal demodulator
consisting of a trensversel equalizer followed by post-
equalization filtering of verious kinds are compared to the
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optimal demodulator to determine whether these more easily
implemented systems achieve near-optimal performance. It is
concluded that the minimum mean-square error transversal
equalizer with no post-equalization filtering is the most
promising suboptimal system: it achieves near-optimal per-
formance under low-noise conditions. For noisy channels,
hewever,‘only the optimal demodulator performs well.

The investigation of channel equalization techniques
leads to a simple method for estimating the effect of finite
observation interval on system performance. An additional
approximation based on the assjmptotic behavior of the demod-
ulator performance permits the effect of finite observation
time to be isolated from effects due to noise, resulting in
an approximate method for performance prediction which
requires only simple calculations.

For unknown channels, methods for channel measurement are
considered which use either the information-bearing signal
alone to probe the channel or a transmitted reference signal
multiplied with the’message.' In both cases optimal channel
state estimates are presented, and in the latter case the
optimization is carried out over the reference signal as well,
including an extensive treatment of optimal and suboptimal
signal design. It is found that the non-reference technique
is impractical, but its consideration leads to a bound in the
performance of any system subject to a constraint on trans-

mitter power, a bound very nearly achieved by the optimal
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transmitted reference system if the fading rate of the chan-
nel is much slower than the signalling bandwidth.

The effect of imperfect channel measurements on demodu-
lator performance is invéstigated in an exact manner for the
case of single-notch selective fading by means of a laborious
numerical technique; this investigation includes a study of
optimal transmitter power division, The results of these
"exact" calculations point the way to a much simpler approxi-
mate technique for calculating, with reasonable accuracy, the
effect of noisy channel measurements on system performance.
This approximate analysis provides formulas which are the
foundation of a simplified design procedure for predicting

the overall performance of dispersive-channel communications

systems in terms of some fundamental parameters of the chan-

nel and the system itself.
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CHAPTER l: INTRODUCTION

1.1 Description of the Problem

Many modern communications systems operate over channels
which exhibit severe dispersive effects: transmitted wave-
forms are distorted in time and frequency by the channel.
Dispersion might be caused by multiple transmission paths, as
in H. F. ionospheric channels [1l] or navigational satellite
systems [3]. Reflection from an extended scatterer, such as
lunar reflection [4], can cause dispersion, as can diffuse
écatterers such as the ionosphere, troposphere, or meteor
trials [2]. 1In any system of this sort the factor which
fundamentally limits performance is distortion due to disper-
sion rather than additive fluctuation noise. The purpose of
this research has been to analyze techniques for mitigating
dispersion so that system performance may be improved. In
particular, analog communications systems are considered.
They are interesting in their own right for voice and telem-
etry communication, and they provide useful models for highly

multiplexed digital systems as well.

1.2 The System Under Consideration

Figure 1-1 is a pictorial representation of the system

investigated in this research. A message source, a(t), is
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modeled by a stationary random process with known power spec-
trum. It is often convenient to assume also that this source
is Gaussian. After modulation the resultant waveform, s(t),
is passed through a dispersive channel and received in the

presence of additive noise, N(t). The demodulator attempts

to recover the message from the distorted channel output,
f% y(t). If the state of the dispersive channel is unknown, it
- is necessary to measure it to demodulate efficiently. A
Mﬁ measuring system is included for this purpose, the output of

which controls channel-dependent parameters in the demodula-

e tor.

”? Many questions about this system are of interest:
l. How is the channel characterized?

;i 2. For a given channel state, how is the received

- signal demodulated? Can an optimal demodula-

. tor be defined? If so, how well does it per-

form? How do practical, suboptimal demodula-

tors compare to this performance? Can param-

N § eters which are fundamental to system perform-
ance be isolated?

,,,,,, i 3., If the channel is unknown, how can demodula-

tion be performed? What is the performance

of optimal methods? Does the use of a trans-

mitted reference signal simplify the system?
Can the channel measurement system and refer-
o ence signal be jointly optimized? Are there

simple schemes which are nearly optimal?



4. What is the effect of imperfect knowledge of
the channel on demodulator performance? How
can transmitter power be most profitably
divided between message and reference signals?

5. What parameters are most important in char-
acterizing overall system performance? Can
the communication system be described by these
parameters with sufficient accuracy to permit
"first cut" system design using simplified
methods?

This report is an attempt to answer these questions.

1.3 Channel Characterization

Dispersive communication channels, regardless of the
physical origins of the dispersion, affect the signals pass-
ing through them in the same general way: an impulsive
input will be dispersed in time, and a sinusoidal input will
suffer spectral broadening. Since most channels used for
communications (particularly electromagnetic channels) behave
linearly [2], the channel is generally represented as a

linear integral operation on its input, (11, [2], [5].

o) = [ nee,0 xe) a (1-1)
The channel is characterized by its time-varying impulse
response, h(t,£), or, equivalently, by its frequency response

function,H(w,t), [6]).
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H(w,t) = f h(t,£) é_ngdg (1-2)

-

In this research the time variation in the channel model is
assumed to be slow with respect to the signalling bandwidth,
usually the case in H. F. and troposcatter channels [1].
(If, as in orbital dipole channels [7], the rate of channel
variation is greater than the signalling bandwidth, then the
channel is not "measureable" [8] except in a statistical
sense, and a waveform-dependent communication technique such
as analog transmission would be useless.) This slow varia-
tion permits the use of a quasi-stationary channel model based
upon a time-invariant impulse response valid in some time
interval consistent with the channei fading rate. Channel
time variations can then be accounted for by ensembles of
time~invariant channei states, and the system will be inde-~
pendent of histdrical time.

For band-limited systems the tapped-delay~line approxi-
mation to the channel impulse response, [6], [9] through [13],

is quite convenient and extensively used in this research.

1.4 Known Dispersive Channels

For channels modeled by known time-invariant impulse
responses, the extension of well-~-known continuous estimation
techniques, [14] through [17], to the case of complex random
processes and post “nonlinearity system memory permits the

derivation of analog demodulator structures optimal in the



sense of maximum a-posteriori probability. For linear modu-
lation this criterion is shown to be equivalent to minimiz-
ing mean square error, and the resultant system is a form of
Wiener-Hopf filter [18]. The performance of such a system
in the case of an infinite observation interval bounds the
performance of any physical demodulator. The dependence of
this bound or parameters such as fading depth and SNRl is
investigated for selective fading channels of phyéical
interest. An interesting outcome of these calculations is
that there is an intringic loss in peiformance which can be
associated with selective fading channelé relative to non-
fading channels.

A sampled-data formulation of the problem permits inves-
tigation of the degradation of performance due to finite
observation interval, an important parameter since it is
directly related to system complexity. The resultant sampled
data system is closelj‘related in form to the equalization
systems described by Tufts, [19] through [22], George [23],
[24], and Niesson and Drouilhet [25]Afor digital communica-
tions. In the limit of high SNR these systems are equivalent
to the minimum-mean-square error transversal equalizer of
Lucky and Rudin [26]. BAnalysis of the performance of these
closely related systems has led to some simple ways to pre-

dict the degradation due to finite observation time.

1
Signal-to-Noise Ratio.

L
:
o
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Simpler equalizers using a zero-forcing algorithm have
been proposed by Lucky [27], [28], Ditoro [29], [30], and
Schreiver [31]. These systems are compared to the optimal
system to determine the conditions under which increased

system complexity gives worthwhile performance gains.

1.5 Unknown Channels

When the selective fading channel is unknown, accuarate
identification of the channel state is required to effec-
tively demodulate the signal. This identification can in
principle be made by observing the channel output when its
input is a pure message-bearing signal, or the channel can
be directly measured by transmitting a special reference sig-
nal for the purpose.

The first technique is desirable if the transmitter is
power-limited since no transmitter power need be diverted to
channel measurement. This no-reference method has been
effectively applied to digital communications systems, {25!
through [28], [31],in which decision feedback may be used to
provide a virtually noise~free local reference equivalent to
a transmitted reference. However, for analog communication
the required feedback operations are quite complex, and the
resultant local reference is not at all noise-free. Van
Trees [32] has derived a feedback-type demodulator, but it
has non-causal elements in the feedback loop which make its
physical mechanization in feedback form impossible without

the use of ideal predictors. A non-feedback system,



theoretically realizable, is investigated in this report;

the system is very non-linear, and exact performance analysis
has proved intractable. However, this system is the starting
point for derivation of the Cramér-Rao bound [33] throwvgh
[35] for simultaneous channel-state and message estimation,
so it is of theoretical interest.

Use of a transmitted reference signal to make channel
measurements independent of modulation greatly simplifies the
construction and analysis of the demodulator; these measure-
ments are used to control channel-dependent parameters in a
receiver of "estimator-correlator" form [36]. This technique
has been applied to digital communications by several authors
[27), ([30], [36] through [39]. Chesler [40] proposed an ana-
log communication system using pilot tones for channel meas-
urement but did not analyze the performance of the system.

It is shown in this research that if the reference
system is optimized, and some reasonable assumptions on
channel stationarity are made, then the performance of an
adaptive transmitted reference demodulator very nearly

achieves the Cramer-~Rao bound.

1.6 Channel Measurement

Estimation of channel state using a transmitted refer-
ence signal and the optimization of the measurements have
been studied using different problem formulations by Root [8],
Kailath [41], ([42], and Turin [43]. In this report the prob-

lem is reformulated with the tapped delay line channel model

Ui F

S
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explicitly accounted for.

The resultant estimator is partic-

ularly convenient for implementation, and permits an easy

derivation of a necessary and sufficient condition for opti-

mal reference signals. The design of reference signals is

extensively discussed; optimal signals are found and compared

in performance to easily-generated suboptimal signals such

as PN sequences ([44].

1.7 Overall System Performance

Error at the output of an adaptive, dispersive-channel

demodulator arises from three sources:

l.
2.

Additive noise at the receiver input.
Residual distortion due to incomplete "equal-
ization" of the dispersive channel.
"Mismatch" between the channel and demodu-
lator caused by imperfect channel measure-

ments.

For a communication system subject to constraints on param-

eters such as transmitter power, system complexity, or band-

width-to-fading-rate ratio, these sources of error cannot be

independently minimized; but there usually exists a choice of

design parameters for which the total error is a minimum,

A

large part of this research has been an investigation of the

effect on system performance of this choice of parameters,

and a comparison of suboptimal systems to the bounds provided

by optimal systems.
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Equations which exactly describe the performance of the
adaptive demodulators considered in this report were derived
for the case of noisy channel measurements, and evaluated
numerically for several cases of physical interest to give
insight into the problem. These "exact" calculations are
extremely difficult; the equations are of non-linear matrix
form and require numerical integration. However, an approxi-
mation technique which effectively eliminates the non-
linearity, resulting in vast simplifications, has been found
to be in good agreement with the "exact" results. This sim-
plified form permits one to make rapid estimates of system
performance as a function of gross channel parameters such as
bandwidth, fading-rate, severity of fading, and delay spread,
and of fundamental design parameters such as SNR and observa-
tion time. A consequence of this simplified analysis is an
analytical expression for optimally dividing transmitter
power between message and reference signals which closely

fits the results obtained by numerical optimization.

1.8 Summary of the Report

This report is devoted to comparison of various tech-
niques for analog communication over selective fading chan-
nels to provide a basis for the efficient overall design of
systems for this purpose.

Chapter 2 describes optimal methods for analog communi-
cation over dispersive channels under the condition that the

channel state is known. The performance of such systems is

R

3 &

3
|
o

e
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studied to provide bounds on the performance of any simpler
systems operating over the same channel. Chapter 3 is a dis-
cussion of some suboptimal methods which have been proposed
for communicating over dispersive channels. Their perform-

ance is analyzed and compared to the results of Chapter 2.

Chapter 4 considers the measurement of unknown channels.

Both transmitted-reference and non-reference estimators are

investigated and compared to the Cramér-Rao bound for simul-

3
3

taneous estimation of channel and message. Optimal and sub-

optimal reference signal designs are discussed. Chapter 5

LA

treats the effect of noisy channel measurements on demodula-

tor performance and treats the problem of optimal transmitter

Sl

power division. The results of numerical evaluation of the
exact performance equations are presented, and an approximate

analytical technique of reasonable accuracy discussed.

[Eeh—

Chapter 6 summarizes the main conclusions of the research and

i includes some suggestions for additional work.

Ty
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CHAPTER 2: OPTIMAL DEMODULATION FOR KNOWN

DISPERSIVE CHANNELS

In this chapter we consider optimal techniques for com-

municating over known dispersive channels when the channel
state is known (or has been measured without error). After

a brief discussion of channel modeling, the optimality cri-

terion of maximum a-posteriori probability is investigated;
and receiver structures for linear and phase modulation
derived. Consideration of these structures indicates that a
moré practical approach to the demodulation problem is to

use linear passband equalizers under a mean square error

optimality criterion. General expressions for system per-

formance are derived using Wiener-Hopf techniques for the

case of infinite observation ihtervals,and sampled-data tech-

niques for finite intervals. These expressions are evalu-
ated for certain examples of physical interest, leading to
some general observations about the assymptotic behavior of e |

optimal anti-dispersion systems.

2.1 Mathematical Description of Selective Fading Channels

In section 1.3 it was assumed that the time variation of

the channel was sufficiently slow compared to the signalling

bandwidth that the channel frequency response could be
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modeled by a time-invariant transfer function,l H{jw) , valid
over a time interval consistent with the quasi-stationary
assumption. If the signals transmitted over the channel are
esseﬂtially band-limited to the frequency band, -ww < w < 7w,
then H(jw) need be represented only over this same band. An
exponential Fourier series can thus be used to approximate
H(jw); the mean square error with respect to uniform fre-

quency weighting will be minimized for a finite approximation.

o

—jkm

H(juw) = ) hke W , ol < W (2-1)
k=e=w
T™TW- W

hy = I%W'f H(juw)eIXF  du . (2-2)
-TW

The impulse response of the equivalent bandlimited channel

becomes

k=-=

hit) = § hks[ —;{-ﬂ ’ (2-3)

resulting in the familiar tapped delay line channel model [6].
Since any physical channel will have an essentially time-

limited impulse response, a nominal "delay spread," Tc, can

be associated with the channel. T, determines the number of

terms in (2-1) or (2-3) required for adequate

5 lThroughout this report all signals, impulse responses,
etc., will be assumed to be the pre-envelopes of the corre-
sponding narrow band physical quantities (See reference [1],
p. 285).
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channel representation (i.e., n, = WT delay elements are
needed in the model).

All channels considered in this report will be assumed
to be exactly represented by a finite number of terms, n,.

Thus,1

- - k-1 -
h(t) = Z h c[: w:} . (2-4)

It is convenient to assume that all channels, regardless of

the nature of their fading, are passive and dissipationless;
this permits comparison of the effects due to different
channel states independent of power considerations. The nor-

malization condition

) W nc
1= Lo f«in(jw)lzdw - k;ghk|2 (2-5)
-l -

assures that signals with a flat spectrum have the same aver-
age power at both the input and output of the channel. It is
also convenient to assume that time and frequency scaling has

been performed to make the two-sided bandwidth of the system,

2w, equal to unity; the tap spacing in the channel model is

then one second.

lIt will be convenient at times to use a non-causal
representation. Any fixed time advance required to make the
channel causal will be lumped with the propagation delay.

el
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Example Channels

The performance of demodulators for selective fading
channels is quite sensitive to the state of the channel. It
is impossible to consider all allowable channel states, so we
are led to choose some examples of different channels on
physical grounds, calculate performance, and then interpret
the results as generally as possible on the basis of insight
gained from the calculations,

The amount of fine-structure in frequency response which
can be simulated by a delay line channel model depends upon
the number of taps, n.s used for representation. It has been
found that five tap models generate reasonably realistic fad-
ing effects, so examples of this form were chosen to find the
effect of various types of fading on demodulator performance.
Six of these examples are referred to throughout the report:
their impulse responses are given in Table 2-1, and Figure

2-1 and 2-2 show the corresponding frequency responses.

Table 2-1. Impulse Responses for Example Channels.

Channel No. hy h, hs h, hg
1 1.0 0.7 0.4 0.1 0.0
2 1.0 0.6 0.2 0.1 0.05
3 1.0 0.5 0.0 -0.5 -0.1
4 1.0 0.4 0.4 0.4 0.4
5 1.0 0.9 0.8 0.7 0.1
6 1.0 0.1 -0.5 0.2 -0.1
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FIGURE 2-1. FREQUENCY RESPONSE FUNCTIONS FOR
EXAMPLE CHANNELS (5 TAP).
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FREQUENCY RESPONSE FUNCTIONS FOR

EXAMPLE CHANNELS (5 TAP).

FIGURE 2-2.
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For reasons of computational ease these examples have real
tap~-gain coefficients, which makes their bandpass frequency
responses symmetrical about the carrier frequency. The loss
in generality due to real coefficients is small because the
Fourier series expansion for the bandpass channel could have
been a one-sided one with the reference frequency taken at
the lower edge of the passband; the resultant pre-envelope
would then have been symmetrical.

Examination of Figures 2-1, 2-2, and Table 1-1 show
channels 1 and 2 to be of the lowpass-filter variety, channel
1 having a sharper high-frequency cutoff than channel 2.
Channel 3 has a single undershoot in its impulse response;
and its spectrum exhibits a frequency-selective "notch."
Chahnel 4 is an example of a channel with a long multipath-
spread, its spectrum shows a double notch. Channel 5 illus-
trates the effect of severe, adjacent-multipath, and its fre-
quency response has very deep fading. Channel 6 is an oscil-
latory channel; it shows a peaking effect in the passband,
and an extreme fade at the band edge as well.

Examéles such as these have provided a great deal of

insight into effects caused by dispersive channels in general.

Single~Notch Selective Fading
The simplest possible model of selective fading consists
of a single fading notch in the system passband. Only two
taps in the channel model are required to simulate this

effect. That is, if

i

R
3
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2
.

B(je) = 1 - [r 30| &7 (2-6)

then the channel frequency response has a single notch which
appears at frequency w, whose depth is controlled by the

parameter, r. (As r+1 the fading depth goes to infinity; as

r+0 the fading disappears.)

£ This simple model requires a minimum of computational
complexity,and leads to satisfying physical interpretations

3 of results which are not cluttered by second-order effects

due to additional fine structure in the channel model.

2.2 Optimal Demodulation

J The waveform observable by the demodulator, y(t), is

produced by the system shown in Figure 2-3.

|
J Message | yero-Memory| sl(a,t) Dlgg:iiéze x(t)_fﬁ\k_y(t)

g N(t)

4 Figure 2-3. Transmitter and Channel Model.

i The message, a(t), is assumed to be a zero-mean, stationary,
Gaussian random process with known covariance. A zero~memory
modulation step produces the signal s(a,t) which is trans-

mitted over the dispersive channel, h(t). Additive, zero-

mean, stationary CGaussian noise, N(t), perturbs the received
oy signal; a(t) and N(t) are assumed to be statistically indepen-

dent since they are generated by independent physical sources.
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The purpose of the demodulator is to estimate the mes-
sage given the observed channel output and any available
a-priori statistical knowledge of the message. In finite
dimensional estimation problems the technique of choosing the
message estimate, a, to be that value of a which maximizes
the a-posteriori probability density function (the MAP
criterion) is well known. Generalizations of this technique
to the waveform estimation problem have been made by a number
of authors, {14] through {16]. Their technique has been to
reduce the random processes to coordinates using the Karhuren-
.Loéve expansion, find the MAP estimates based on a finite num-
ber of these coordinates, and generalize to the continuous
case by formal limit~taking. The derivations are not rigor-
ouély justified, but the results are reasonable physically.

A more straight f orward approach is to use the notion of a
probability density functional on a vector space of waveforms.
Parzenl has shown that the vectorkSPace must be a reproduc-
ing kernel Hilbert space to make a valid definition of this
functional, and considers several examples, one of which is
4directly applicable to the linear modulation case of this
report. Although the extension to non-linear modulation is
not obvious, this approach will be taken without proof to

derive estimates in this section. The resultant estimator

lParzen, E., "Probability Density Functionals and
Reproducing Kernel Hilbert Spaces," Chapter 11 of Time Series
Analysis, M. Rosenblatt, ed., John Wiley and Sons, New York,
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agrees with the result obtained by applying Middletonfs1

orthogonal expansion for complex random processes to an exten-
sion of Williams' [16] work to the case of post-nonlinearity

channel memory.

The MAP Estimate
If a, x, and y represent finite dimensional vectors
whose components are time samples of the waveforms depicted
in Figure 2-3, the a-posteriori density function p(a/y) can

be written in the following way.z' 3

p(y/a) paég) Py (Y-x) Pala)
Py_(y_) py_Ty_)

pla/y)

(2-7)
= K(p) exp - ((zr-x07T By' (y=x) +

T

-1
%
+ a*” R "a} .

ga and Ry are the message and noise covariance operators, and

K(z) is a scalar function independent of the message, a. The
maximization of p(a/y) with respect to a is equivalent to
minimizing the term in braces in (2-7). This term, call it

e, may be written in inner product form.

lReference [5], p. 388.

2Notation: Vectors are denoted by single underscore,
matrices by double underscore; transpose is denoted by super-
script T, and complex conjugate by superscript *; lower case
p stands for a probability density function.

3For a discussion of the density function for complex-
envelope variables, see Wooding, R. A., "The Multivariate
Distribution of Complex Normal Variables,” Biometrika, Vol. 43,
June, 1956.
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The MAP criterion for the continuous case will be defined to
be the formal extension of (2-8) to the vector space of con-

tinuous functions.

Suppose y(t) is observed over the time interval, T ,of

length T,.

T = {t: t; - Ty <t<ty} (2-9)
Then, for a channel with delay spread Tor y(t) depends upon
a(t) for points of time in the interval T,

T = {t:t, -Ty - T

a 0 <t <t} (2-10)

C

Denoting the convolution operation by ® , €2 is written

€2 = <(y-x), R;lg (y—x)>T + <a, R;1 ®a>T
a

= IT [ RiM(u-t) [y(u) - x(u)1ly(t) = x(r)]1*duds
T ;

+ jTa fTaR;I(A-I) a(1) a*(r) dxdr . (2-11)

The functions R&l(.) and R;l(.) are the inverse covari-

ance operators for noise and message, and they will be

‘assumed to exist.1 e? can now be optimized with respect to

lFor stationary random processes with rational power
spectra, the inverse operator can be found in terms of gener-
alized functions by the method in reference [5], Appendix E.
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a(t) by the variational procedure of Appendix A.

ant necessary condition on the estimate, a(t), of the message
waveform is the integral equation

~

a(t) =

*
[ th* (1) ® |-
T ,

R;(t-ri]}df

=a

R Gty - &@law,
T

(2-12)
where

%(t) = h(t) ® s(a,t)

(2-13)
Equation (2-12) describes an estimation procedure which is
physically unrealizable.

However, it is possible to inter-
pret this equation to give the structure of the demodulator

or the type of operations required if we consider unrealiz-

able filtering operations carried out over an infinite obser-
vation interval.

Let us then assume that the set T of (2-9)

is the entire real line, and also that the additive noise is

N

essentially white with two-sided spectral density 0 and

examine the specific structure of the estimator, (2-12).
A. Linear Modulation, s(t) = a(t).
the possibilities of double-sideband A.M.

single~sideband A.M.

This case includes

(a(t) real), and
(the imaginary part of a(t) is the

The result-
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Hilbert transform of the real part). Substituting into

(2-12) we obtainl

) . » . o N )

a(t) = J {h*(T)GDRa&PT)}dTI ﬁz-é(r-u)[y(u)-x(u)]du
= %; [ Rax(r—t){y(r) - x(1)ld (2-14)
1 s .
=N Rxa(t)() fy(t) - x(t)] .

if R;a(t) is regarded as the impulse response of an unrealiz-
able linear filter, the demodulator may be diagrammed as in

Figure 2-4.

;}~\> Filter
I * >
y(t) - 1/ Rya (€) a(t)
x(t)
Channel
Replica
h(t)

Fiqure 2-4. Demodulator Block Diagram for Linear Modulation.

Since most of this report is devoted to discussion of this

system, it will not be treated in more detail here.

ley(t-r) denotes the crosscorrelation between two ran-
dom processes, x{(t) and y(t), i.e.

Ry, (t=1) = Elx(x) y*(0)].

o
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B. Angle Modulation, s(t) = v2A eja(t). In this case

a(t) may be assumed real, and, making use of the tapped delay

line channel model, (2-4), the following relations are true.

ds(a,t) oo ja(t) -
e 5/7R e (2-15)

- *
h* (1) ® %g (1) X Ra(1~t{} =
a=a

b

bt nc o . D
J {1} hié(t-x-(k—l))}{/ﬁ' e_Jg'e-Ja()‘)Ra(x-t}}d}
k=1

r D¢ .-
= /Z& 737§ nf &%) r_(t-rak-1) (2-16)
k=1
ak(r) = a(t - (k-1)) (2-17)

Substituting into (2-12) we now obtain

T 2 I
a(t) = é-o-f (/2R 737 § n} e %R (t-r4k-1) My (1) -k (1) der

[

nC ¢« ra w
= @i E&OT yxwn, @
k=1

where

_ V2R . %
£.(8) = = by

R (t+k~-1) . (2-19)
0 a
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FIGURE 2-5. DEMODULATOR BLOCK DIAGRAM FOR

ANGLE MODULATION.
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Equation (2-18) can be block diagrammed as shown in
Figure 2~-5, a feedback demodulator differing from Van Trees'

result [32] in that a bank of filters is required: Van Trees'

needed only one filter because of his assumption of a zero-
mean, purely random channel.

The structure of the receiver is seen to be in the form
of a generalized phase-~lock loop. The combinations of the
multipliers and the 90°phase shifter give equivalent sinusoi-
dal phase detectors. One input to each of the phase detec-
tors is an appropriately delayed version of the receiver's
estimate of what the transmitted signal s(t) is, so that the
receiver is really trying to isolate each component of the
incoming multipath, and to derive from this a correction sig-
nal to be applied to the phase modulator. This seems a log-
ical thing to do.

However, the construction of such a receiver would be
difficult because of the unrealizable nature of the block

diagram. The feedback must be instantaneous in order to give

the proper error signals from the phase detectors, but any
physical delay line will cause a real delay of Te seconds
between the received signal and the estimate. This means we
would have to build a system which predicts Tc seconds ahead
of the input. Although it is possible to build predictors
based on the statistical knowledge of the message, the pre-
diction time in this case has to be nc-l times the nominal
correlation time of the signal. Thus the prediction would be

almost entirely statistical. Since the utility of the
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phase~-lock loop is based on precise, instantaneous phase cor-
rection, the very idea is negated when a predictor is used.
Another serious difficulty with this form of system is
that of cross-modulation products. Since the input to each
phase detector is a sum of delayed versions of the trans-

mitted signal, there will, in general, be a non-zero phase

detector output even though there might be a zero phase error
between the estimate and a given multipath component of the -
received signal. This would lead to false correction signals, .
possibly with the wrong sign.

Although this receiver structure merits closer investi-
gation, it does not appear to be practical as it stands.
Fortunately, there is another technique for combating disper-
sion in the case of angle modulation: anti-dispersion meas- o
ures can be taken before demodulation is attempted. That is,
s{(t) could be estimated (rather than a(t)) and standard, non-
dispersive demodulation techniques applied to this estimate.
Since this "equalization" procedure is linear, the case of
non-linear, angle demodulation is not treated in detail in

this research.

2.3 The Mean Sguare Error Criterion

If we are to restrict ourselves to equivalent linear

demodulation techniques, then it is logical to use the cri-

terion more easily interpreted in terms of conventional per-
formance indices such as signal-to-noise ratio than is the

criterion of maximum a-posteriori probability. It is easy
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to show, using standard Wiener-Hopf techniques [45], that the
minimum mean square linear estimate of the message a(t) is

of the form

a(t) = I £(t-1) y(r)da (2-20)
T

where f(t) is the impulse response of linear filter satisfy-

ing the Wiener—quf integral equation,

f Ry (h=2,) £(t=2,) dr, = R, (4y=t),3 eT.

T (2-21)

Appendix B shows that, for the linear demodulation case, the
MAP estimate of the preceding section is fully equivalent to
fhe estimate given by (2-20) and (2-~21), so distinction
between the two criteria need no longer be made.

Equation (2-21) is well known to have a solution for
physically reasonable correlation functions, [46]}, but the
ease of finding explicit solutions is greatly dependent upon
assumptions regarding the observation "window," T (See Equa-
tion (2-9). A finite interval makes explicit solutions quite
difficult to obtain: the only systematic method of solution
applies to problems in which the correlation functions of
(2-21) have rational Fourier transforms (see Appendix A of
{18])), which is not true for this problem due to the pure
delay in the channel model. Also, this technique is not

amenable to efficient solution by computer. For this reason
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the case of finite observation intervals has been treated by
taking advantage of the bandlimited nature of the signals and
using a sampled-data formulation of this problem, discussed
in a later section.

If the observation interval is infinite, then (2-21) can
be solved using Fourier transform methods. Consideration of
this case provides a bound on the performance of any communi-
cation system operating over a given selective fading chan-
nel. It is not difficult to solve (2-21) under those condi-
tions; the resultant frequency response function, F(juw), for

the optimal demodulator is of the form
S, _(-w)]*
F(ju) = [Sxa :] , (2-22)
y bt V]

where Sxa(w) and Sy(m) are spectral densities correspondirg
to the correlation functions Rxa(r) and Ry(r). Noting the
input-output relations of Fiqgure 2-3,and using properties of
random signals passed through linear systems, (2-22) can be
written as

H*(jw) Sa(-w)

F(jw) = : > . (2-23)
Sy (-v) + [H(jw) | S, (-w)

Note that in the absence of noise the frequency response of
the optimal, infinite observation interval demodulator is

just the inverse of the frequency response function of the

channel.

g
sz

3 |
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L ' The mean square error associated with this system is

calculated using standard Wiener-Hopf methods.

e? = E[|a(t) - a(t)]|?] =

*
R (A =2) £0) £70,) dada,

00

= Ra(o) -

§ — 8
] o 8

-]

%; J [Sa(w) - IF(-jw)IZSY(“)]dw

-]

S, (w) Sylw)

2 f
5= duw (2~24)
"1 osgte) + |H(=30) | %S (w)

£

3 Equation (2-24) provides a bound on the performance attain-
{j able using any physical communication system operating over
) the dispersive channel, H{(jw), and is consequently useful for
comparing with the actual performance of the system to see if

it is nearly optimal. However, before evaluating this bound

[

let us consider the case of a finite observation interval by

a\s
i
!
sl

formulating the demodulation problem in discrete time-sample

form.

2.4 The Sampled-Data Formulation

In the preceding section the difficulty of finding

explicit solutions to the Wiener-Hopf integral equation,

(2-~21), for finite observation intervals was discussed.
Because the length of this interval, T,, can be related to

the complexity of the required demodulator, as is shown in
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Chapteﬁ 3, and because the magnitude of T, is limited by the
rate of fading in the channel, this case is of crucial impor-
tance. A sampled-data approach to the problem automatically
incorporates the length of this interval and provides results
which are theoretically useful and computationally efficient.
In Section 2.1 it was assumed that the system was essen-
tially bandlimited to a normalized frequency interval,
-7 < w < 7, SO that samples taken at the Nyquist rate (once
per second) are a sufficient representation for the random
processes involved.
Suppose the dispersive channel is represented by n, taps
in the delay line model (thus the channel delay spread is
Tc =n, - 1) and that the channel output is observed for an
integral number of seconds, T,, starting at t = 0. Then,

referring to Figure 2-3, the observed waveform can be written
y(t) = h(t) ®a(t) + N(t)

= hja(t) + ... + hn,a(t-Tc) + N(t). (2-25)
c

Let y, N, and a be vectors of time samples of the correspond-

ing waveforms with the kth component defined to be

Yk = Y(t) t= k—l ' k = 1'2, LI TO

Nk =N(t) ’ k = 1’2' e To
t = k-1

a, = al(t) k = 1,2 (T,+T_.)
t=k-1-m, ©7 " ocer 0T
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Then, if we define a Tox(To+Tc) channel matric H to be

_ﬁ“‘ h 0 .'.6—1
n,c :
© h ... h 0..0
H = c . , (2-26)
O hn".hl
acam c e

the time-sampled channel output can be expressed as

y=Ha+N . (2-27)

By assumption, a and N are statistically independent, zero-
mean, Gaussian random vectors with stationary covariance

matrices given by

The a-posteriori density function for a given y can then be

expressed as follows.

p(y/a)p(a) ply, a)

I(_/X) ply) fp(y,a)dg, (2-28)
1 % .k kyT =1 ]l _*T -
expl- { -H" a $ -Ha)}- — a ¢ la
P ;; (X ) &N (z )} cé

N

Iexp (.1 d4a
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A procedure analogous to "completing the square" in the

exponents of (2-28) leads to the form below.

T +Tc

0
2 = —H= 1 -1.T =1 4T S
pla/y)=(270) 2  |glexp - ;3{(3-g Heoy)  @la-Q g_gﬁﬂﬂ
N (2-29)
_ %#T -1 1 -1 _
2
{4
n = —-?- (2-31)
e}
N

The quantity Q™ 'H*T gﬁ& is the mean value of the a-posteriori
density function for a, so this quantity must be the minimum
meah square Bayes estimate for the message vector g.l That
is,

PO L S _[*T -1, 1 -]-1 wp !

a=Q H o y= (B egH+soeltt HT ey

(2-32)

is the estimator of a which minimizes the mean square demod-
ulation error; from (2-29) the normalized error covariance

matrix is seen to be

=

1_1
n

=1 cov(a-a) = & @ . (2-33)
g
a

!
lSee reference [2], Chapter 5.

il
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The parameter n is seen to be the input SNR (signal-to-noise
power ratio) for the system; and, since the error variance is
equal to the noise power at the demodulator output, the diag-
onal elements of A can be interpreted as the reciprocal of
the output SNR's for each message component. Thus (2-33) may
be used for computing the effect of finite observation inter-

val on system performance.

2.5 Performance of Optimal Demodulators

Equation (2-24) determines the ultimate performance of
any physical demodulator. Equation (2-33) gives a similar
bound for a finite observation interval. It is of great
interest to examine the way in which selective fading chan-
nels affect these measures of ultimate system performance.

The equations for mean square error depend upon the
channel state and the power spectra, or covariance matrices,
of both the message and noise random processes. Since these
guantities can take on an endless number of possible forms,
it is necessary to consider idealizations of actual channels
and spectra which retain only the most important, basic param-
eters which affect system performance. These simplified
forms are discussed below.

A. Channel State. The modeling of the channel was

treated in Section 2.1. The five-tap example channels have
frequency responses which are so complex that their main use-
fulness is to show that nothing catastrophic happens to per-

formance when fine detail is present in the channel model.
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Examples of single-notch selective fading permit simplified
interpretation of the results in terms of fading depth and
placement of the fading'notch, the most important parameters
describing selective fading.

B. The Message Spectrum. In this report two examples

of message power spectrum are considered: messages with a
flat spectrum over the frequency band -v < w<n, and messages

with a power spectrum

2 U: (2=-34)
S (w) = o = 0,75 -
a m2+a2

The first case makes all portions of the frequency band

th order

equally important and can be regarded as the zero
idealization for message spectra. The second case gives non-
uniform weighting across the frequency band, and the results
are sensitive to the frequency at which fading occurs. This
case has some useful analytical properties: a Gaussian ran-
dom process with power spectrum (2-34) is a first order
Markov process; the inverse of the normalized covariance

matrix of this process is the simple tridiagonal form shown

below, for arbitrary order.
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[~ 12 -xz 0 £ ] L ] £ 0 7]
l-x% l-x
-X 14x2 .
1-x° 1-x .
-] .
% =3 0 ® L] ? (2—35)
. . 0
: ' 1+x2 -
1-x2 1-x*
-X 1l
0o . . . 0 1-x?  1-%°
where x=e & .

Choosing a = 0.75 insures that 85 percent of the message
power is contained in the frequency band =% < 5_#, so the
message is essentially bandlimited.

C. The Noise Spectrum. The additive noise will be

assumed to be white and bandlimited, a situation typically
true in practice. However, in some calculations it is con-
venient to have a rational noise spectrum, and in these cases

the form of the noise spectrum will be assumed to be

SN(w) = s D=2 . (2-36)

The bandwidth parameter b is chosen to be b = 2 to make the

equivalent white noise bandwidth, Weq, defined as
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[SN(f) af
0 -
Weq = & — (2-37)
Sy (0)

equal to %, the assumed channel bandwidth. This makes the

. 2
noise power, o

N’ equal to the noise spectral density, SN(O).

Analytical Results
Using the above assumptions about the signal and noise

spectra one can numerically evaluate (2-24) or (2-33) for the

mean square demodulation error for any channel state. How-
ever, it is possible to develop some relatively simple analy-
tical expressions for demodulator performance for the case of
single~-notch selective fading which provide insight into the
general problem.

Let us assume a channel frequency response,

-y aJWoemJw |
H(ju) = 2E 8- 2€ ' (2-38)

Yi4r?

with power transfer function

[H(j0)|° = 1 - 20Cos(u=-u,) (2-39)
_ 1 3
= TH? I3 - (2-40

Then, for the case of a flat message spectrum,

S

:

]
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s,(w) =2, el <1,

and an infinite observation interval, Equation (2-24) can be

immediately evaluated.l

n
Ei _ _l 7£ ! Sa(w) SN(w) duw (2-41)
2 Z . 2
Ua oa k| - SN(w)+|H(—]w)l Sa(w)
T
= ..].'. o %—.— J d(ﬂ
n m 1o
~n(l+ H) - 20Cos (wtu;)
=1, 1 , (2-42)
n
Y+ 12 - 4p°
n
where
o3
nE— = input SNR . (2-43)
N

For the Markov message process of (2-34) the integration
is not so straightforward, but it is possible to approximate
the transcendental channel frequency response function by a
rational, Pade appx:ox:i.nmant2 to obtain an analytical result in
essentially perfect agreement with results calculated numer-
ically. The (1,1) Padé approximant to the unit delay func-

tion, e 7%, is

lDwight, H. B., Tables of Integrals and Other Mathemat-
ical Data, to Macmillan, 1961, p. 218.

2Truxal, J. G., Control System Synthesis, McGraw Hill,
New York, 1955, p. 548.
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-jw -jw 4+ 2 (2-44)

When this approximation is used in (2-38) and the rational
signal spectrum, (2-34), and rational noise spectrum,(2-36),
are assumed, then the integral for mean square error, (2-24),
may be evaluated using residue calculus to obtain the follow-

ing result.

2 1 1
o2 n - -
a /1-4pz+ %[(q+q 1)-ZoCoswo(q-'q Y+ %5
(2~-45)
b 2
q = &— = 6—:7-5' = 2.67 ° (2‘46)

Since t2 is the output noise power of the demodulator, the
quantity c;/s2 can be regarded as the output SNR. Thus, for

uniform frequency weighting (flat message spectrum),

2 1 (2-47)

SNR0=nJ1_4pz+_n_ . L

while for a Markov message source

SNR, = n '
0 v 2, 1 -1 -1 1
V1-4p 24 .t.‘_[ (g+q ) =-2pCosu, (g~q )1+ ne

(2-48)
Examination of (2-47) and (2-48) shows that the placement of
the selective fading notch (w;) makes no difference in the
case of a flat message spectrum, while it does affect per-

formance at low input SNR's for the Markov message source.

A
i
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The parameter p in these equations may be related to the depth
of the selective fading notch using Equation (2-39). Letting

D denote the fading depth in dB, we find that

-D .
10 ' =8 GulP=1-2 , (2-49)
402 = |1 - 10 '° . (2-50)

Figure 2-6 shows the effects of various parameters on
system performance for a Markov message source, given by
(2-48) . On the scale of Figure 2-6, the performance for a
white message source is virtually indistinguishable from
the case of mid-band fading (w,=v/2) and the Markov source,
Note that as fading depth increases it becomes more and more
difficult to improve system performance by merely increasing
the input SNR (or transmitter power): performance is increas-
ingly limited by dispersion rather than by additive noise.
Note also that the placement of the fading notch is more
important for low-performance systems than for high-perform-
ance ones. The worst case occurs when the notch is at the
peak of the signal spectrum, and performance improves as the
notch approaches the band edge. Increasing reliance must be
placed upon a-priori statistical knowledge of the message as

the input SNR gets small; and, since there is more observable

message information at the center of the frequency band than

at the band edge, center-band fading must be the most severe.
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As the input SNR gets large the output SNR becomes inde-

pendent of the message spectrum. That is,
SNR, — J/I-47 . (2-51)

For p=0, the non-dispersive channel, the output SNR goes up
as the input SNR, which is well known to be the dependence
observed in practice. However, in the selective fading case
there is a distinct degradation in performance compared to
the non-fading case, despite the fact that the channel was
normalized to assure no power gain or loss regardless of the
fading depth, (passive and dissipationless channel). This
result is quite significant, for it means that no amount of
sophisticated receiver design can ever completely overcome
the deleterious effects of channel dispersion. The actual
amount of this irreducible loss depends on the exact nature
of the channel, and could be regarded as a measure of the

degradation in "channel capacity" caused by selective fading.

Numerical Results

If the case of finite observation intervals is to be
considered, or we wish to examine the effects of higher-order
channels, then numerical methods must in general be used to
evaluate equations (2-24) and (2-33). However, for the case
of single~notch selective fading it is possible to analyti-
cally invert the matrix (2-33), which vastly reduces the
numerical effort required. This matrix inversion is

described in Appendix C.
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Figure 2-7 shows the effect of a finite observation
interval on optimal demodulator performance for single-notch
selective fading and a flat message spectrum. The Markov
message source gives similar results except that the curves
are shifted up or down depending on the placement of the fad-
ing notch., These results were computed using Equation

(2-33), using that point estimator of the message which gives

the smallest diagonal element of (2-33). (We estimate one
point in time of the continuous waveform and "slide" the
incoming data through the resultant demodulator.) Note that
for deep fading channels system performance is primarily
limited by the observation interval rather than additive
noise, i.e., there is severe degradation compared to the

infinite observation interval case when the fading is deep

| and the observation interval small. Recalling that the obser-

vation interval is limited by the rate of fading, it is
apparent that systems operating over channels exhibiting
severe, rapid fading will fall far short of the performance
given by the infinite observation interval case.

Figure 2-8 and Figure 2-9 show the results of computing
(2-24) for the five-tap example channels of Section 2.1.
These examples show the same irreducible loss in performance
due to selective fading as do the single-notch fading exam-
ples. The exact amount of this loss depends upon the channel

state and, as n»=, is given by the expression

£
Caidiiah

i ;
Y Emdiann

éﬁ :a'”""&"‘c‘;f}éé

.
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n

10 log |+ | —Su (2-52)
2w lH(-—jm)lv2

=%

Figqure 2-10 and 2-11 illustrate the effect of finite
observation interval, T,, on demodulator performance. Only
two'examples are shown, but the trends are the same for all
examples if the scales for input and output SNR are extended
or contracted: there is an upper limit on performance due to
the finite observation interval, and the numerical value of
this limit depends upon the exact state of the channel; the
performance of the system approaches the case of an infinite
observation interval as the input SNR decreases; selective
fading alone causes a performance degradation relative to a

non-fading channel.

i

Soas
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CHAPTER 3: SUBOPTIMAL DISPERSIVE CHANNEL DEMODULATORS

In this chapter approximations to the optimal demodula-
tor for known dispersive channels are considered to see the
conditions under which simple suboptimal systems are nearly

optimal. It is shown that the optimal filtering operation

" may be regarded as the cascade of two operations - channel

inversion and post~inversion filtering. The inversion (equal-
ization) operation may be implemented with relative ease in
the cases of two different equalization algorithms discussed.
An analysis and comparison of the performance of these
equalizers leads to a simple method for predicting the depend-
ence of the equalization error on the length of the observa-
tion interval, a parameter related to system complexity.

When the channel is noisy, post-inversion filtering is
required to give near-optimal performance. Various approxi-
mations to the ideal filter are analyzed for performance,
leading to some general conclusions concerning the effective-
ness of different suboptimal demodulators. Finally, an
approximate technique for rapid prediction of the performance
of demodulation schemes for known dispersive channels is
developed. This method requires only simple computations of

assymptotes,
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3.1 Optimal Demodulator Approximation

The minimum mean=-square error demodulator was given, for

infinite observation intervals, by (2-23),

H* (juw) S, (=)

and for finite intervals by (2-32).
A T -1 1 =1}=-1_.T =1
e N (3-2)

'Equation (3-2) is actually the estimator for the entire set
of message samples; in practice one would choose that point
estimator of the message which minimizes the mean-square
error; that is, if ék is that message sample estimate with

minimum error, then

2 T
a =Ccy ’ (3-3)

th

where g? is the k row of the matrix of (3-2). The vector

¢ can be interpreted as the set of tap-gain coefficients of

a transversal filterl

operating on the observed waveform.
Note that as the observation interval is increased there is
a proportionate increase in the number of delay elements and
tap gain computers of the transversal filter, so that system

complexity is at least proportional to the length of this

lBennett, W. R., J. R. Davey, Data Transmission, McGraw-
Hill, New York, 1965, p. 269.

o !

A
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interval., Note also that the channel state appears in a very

complex way (a matrix inverse) in computing ¢, so this opti-

mal system is not easily adapted to changing channel states.

Consequently, it is of interest to consider suboptimal demod-

ulator algorithms which are more easily adapted to changing

channel states than the optimal system, hence more amenable
for construction.

Let us rewrite (3~1) as follows:

3 ' 1 1l

FOo) = groy * 77T @y ¢ (3-4)
7 7 AR
4
3 S (-w)/o2 o2
) Glw) = —E——————g- , 0 = —%- . (3-5)
Sa(--m)/csa oM

G(w) is an a-priori determined filter function independent of

the channel. Examination of (3-4) reveals that the optimal

filter may be regarded as two successive operations on the

[ §
il

data: channel inversion and post-inversion filtering. Since

we are assuming dispersion-limited communications, it is

y
!
i

apparent that the channel inversion operation is the more
significant of the two operations in improving performance.
That is, the input SNR, n, might be large enough that F(jw)

could be approximated by a few terms in the expansion

. 1 1 G(w) 1 G%(w)
(F(Jw) £ ] ) i = emmmT————— + + o ®
H(3w {: " lH(jw)!z n’ lH(ij“ t}

(3-6)
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Suppose then that C(jw) is some approximation to the channel

inverse,

C{juw) = m (3-7)

Then

FGw 2 o [1 - Eot et 20dn ], (5-8)
n

The higher order terms in (3-8) may be realized by cascading
' stages of channel inversion, so the crux of the realization
of dispersive channel demodulators lies in finding approxima-
tions, C(jw), to the channel inverse which can be mechanized
with reasonably simple systems.

Later in the chapter the post-~inversion filtering oper-
ation is investigated, but for the moment let us consider the
inversion ("egqualization®) operation;alone. In particular,
let us consider the easily implementéd transversal filter
approximation,
e-jkw

C(jw) =) ¢

. (3~9)
¥ k

3.2 The Fourier Series Approximation

The most obvious way to approximate the channel inverse
is to use an exponential Fourier series, since (3-9) is an

expansion of this form. That is, choose the {ck} such that
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1 f eJk®
Ck = p= J m duw ’ (3-10)

-7

2

which assures that the norm error ¢ is a minimum.

kil
2
e? = %?J lPTT‘Jl"BT - C(jw) | dw (3-11)

-7

It is convenient at this point to introduce the z transform,l

z = eJ”, and inner product notation.
' -k
C(z) = ] cp2 . (3-12)
k ‘
1 -k -
°k T “@(zy ¢ % * ’ (3-13)
2
ez = llﬁTéyu-C(z)" ’ {3-14;
where
1l ~-1,d
<£(z) ,g(z)> A Y51 § f(z)g*(z )~§ (3-15)

-l
The notation g*(z ') refers to the reciprocal polynomial2 of
g(z); the polynomial obtained by replacing z by z™! and using

the complex conjugate coefficients. The contour of

lTruxal, J. G., Control System Synthesis, McCraw-Hill,
New York, 1955.

2Grenander, U. and G. Szego, Toeplitz Forms and Their
Applications, University of California Press, Berkeley,
Caglfornla, 1958, p. 3.
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integration is around the unit circle in the positive sense.

When the channel is represented by a delay line model,

- (k-1) (3-16)

e
H(z) = k__Z:lhkz
then the inner products of (3-12) -~ (3-15) involve only poly;
nomials in z, and may be calculated by straightforward resi-’
due calculus.l This algorithm would appear at first glance
to be difficult to implement, but it turns out that the
Fourier series approximation has the property of forcing
zeros in the “"sidelobes" of the egualized channel output, -
C(z) H(z). (Sidelobes are defined to be the coefficients of
all the terms of C(z) H(z) except the constant term.) This
is the algorithm used by Lucky {27], (28], DiToro [29], (301},
and Schreiver [31] in mechanizing their transversal equali-
zers., The Fourier series approach taken here is far more con-
venient for calculating performance, however, than the formu-
lations used by the above authors.
This zero-forcing property is demonstrated as follows,

Suppose that
z (3-17)

Then the overall response of the channel and equalizer is

H(z) C(z), ideally equal to unity.

lChurchhill, R. V., Complex Variables and Applications,
McGraw-Hill, New York, 1960.

G
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n
c m
H(z) C(z) = ] h 2z~ (k-1 Y c.z k
k k
£=1 k==n
m+nc-l .
= ) @2 ’ (3-18)
=-7
where
‘nc+r+1
2 hkcr-k+1 ’ -n <X < "(Tl"‘ﬂc"'z)
k=1
e
ot kzlhkcr-k-l-l r mlneng#l) 2 <m
(3-19)
e
h,ec__ y, M+ l<r<m+n, -1
remtl k" r-k+1 c

For -(n-n_+l) < r < m we may substitute (3-13) into (3-19) to

obtain

e e 1 L
r-k+

«. = ) hec = h, < z >

r o ik r-k+l = Ly kH "’

n
c
r-k+1
! hz

_1 k=1 dz _ 1 [ H(z)z" dz
- Zn3 H(z) z 273 H{z) z

[
~
Ly |
0
o

(3-20)
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Thus this algorithm forces zeros in the overall response for
the first m positive sidelobes and m+nc-l negative sidelobes.,
Another useful property of this inversion algorithm is
that the equalizer is causal if H(z) is minimum-phase (no
zeros outside the unit disc). Suppose that (3-16) is fac-

tored into the form

nc-l

1

H(z) = h, zi{ (l-r,z ) , (3-21)

2

<1' lzl’oooln _10

so that H(z) is minimum-phase if |r c

ol
Substituting into (3-13) we obtain

o = Ao foZ dz . 1 [ = da
k = 2wy 7 H(zZY "z  2Zw3 ] H(z")) "z

-k
I z dz
= 773 56 ne-1 ~z - (3-22)

hl lll (1-!'12)
L=

For a minimum-phase channel the integrand of (3-22) is analy-
tic on the unit disc if k<0, making ck=0 for k < 0, a causal
equalizer. (It is also apparent that if H(z) is‘analytic on
the unit disc, then ck=0 for k<0, a completely non-causal
system.) This makes good sense since we would expect a chan-
nel with no zeros outside the unit circle to have an inverse
with no poles outside the unit circle (no negative time

response) .
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The above remarks show that the equalizer, (3-17), is
one~-sided if the roots of the channel, H(z), are all either
inside or outside the unit circle. When there is a mixture
of roots inside and outside, the equalizer will be two-sided,
so that there will be an optimum choice of the number of posi-
tive and negative taps, subject to a constraint on the total
number of taps (observation interval). The required juggling
of the number of positive and negative taps to achieve this
optimum is not amenable to analysis. However, the experience
of many examples indicates that the performance of this fully
optimized system is essentially the same as the performance
for a channel whose zeros outside the unit disc have been
reflected into the unit disc; this "equivalent" channel has
a one-sided equalizer requiring no optimization. Consequently,
there appears to be little loss of generality in considering

only minimum~-phase channels in evaluating performance.

Performance Analysis
The index of performance for the channel inversion

approximation will be the mean-square equalization error,

el = l'l - H(z) C(z)H2 o (3-23)

rather than the approximation norm of (3-14). Equation (3-23)
has more physical meaning than (3-14) and is easily calcu-
lated if use if made of (3-18) through (3-20).

As in Chapter 2, simple examples of selective fading

channels lead to analytical results which provide insight
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into the more general cases. First consider single-

notch selective fading,

H(z) = 1 - rel¥0z™! R r <1 ’ (3-24)

for which (3-23) is quite simple to evaluate using residue

calculus:

e? = (£ T, (3-25)

where T, is the length éf the observation interval. The mag-
nitude of the channel zero, r, is related to the depth of
selective fading by (2-49). Note that on a decibel scale the
equalizer error is proportional to the observation interval,
the constant of proportionality depending upon the fading
depth.

For higher-order channel models the trends are generally

the same: to see this consider a channel with two zeros.

H(z) = (l-rlz-l)(l-rzz-l) o lr,l<le ] o (3-26)

The equalization error for this channel may be shown to be

2 2 ©
- T0+l _ To
2
1-=2 + o r, )P - =
2 27 r !
r, 2
1——-
r,
{(3-27)

If the channel roots are well separated (in radius), i.e.
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)

then

27T 14+ |r 2
2, o, } zl -
€ I !rx{ T . (3-28)

This result is quite similar to (3-25): the error is domin-

St

ated by that root closest to the unit circle, and there is a

multiplicative factor (intercept on decibel scale) which

S momeid

causes a degradation in performance relative to (3-25).

é, ,,

To see what happens when the channel roots are not well

separated, consider the case of two conjugate channel roots:

¢ "
[

13 Substituting into (3-27) we obtain

A

@J 2 _ Z)To . Sinmo(To+l) . Sine,T,

. & = Sinuw, x* Slnwo g

j (3-30)

Now there is an oscillatory multiplicative factor, but the

dependence upon T, is still dominated by the channel root

radius.

The degenerate case of multiple channel zeros is

obtained by setting w, = 0 in (3-30).
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e? = (x2)T0 . [(Ty+1)2 + r?7?) : (3-31)

In this case the dependence upon T0 is not basically linear
(on a dB scale); however, multiple channel zeros would be

unlikely to occur physically.

Calculations of the equalization error for higher-order

channels gets algebraically complicated, and are best done

numerically. These calculations show that the performance )
trends are similar to those of the preceding examples; in «%
particular, the dependence upon T, is basically linear and
the rate of improvement depends upon that channel zero clos-
est to the unit circle. This point will be discussed more
fully in the next section, where the performance of the
Fourier series equalizer is compared to a somewhat different

equalizer.,

3.3 The Minimum Mean~Square Equalizer

Although the criterion used to evaluate the performance

of the Fourier series equalizer was the mean square equali- #

zation error, that algorithm was not optimal in this sense.
It is thus logical to consider the optimal transversal equal- &
izer, successfully mechanized for telephone channels by

Lucky and Rudin [26], to see whether this more complex system

performs significantly better than the zero-forcing equalizer,

Let us assume a causal equalizer of the form.

m
C(z) = § ckz-(k-l) , (3-32)
k=1

%
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where any required non-causality is realized by delay. That
is, if n seconds of delay are required, the equalization

error is

E(z) = z - H(z) C(2) . | (3~33)

Then the most general form for mean square error is

% 2 _ 1 -1, dz
(3-34)

)

- where R_(z) is a weighting function, typically the z trans-

BN

. form of the message autocorrelation function.l This error

“K may be written as

o 2 1 wi~ly 2 " : 2R ar.—ly 142

g € = m § Ra(Z)H(Z)H (z °) m‘)— C(Z)]‘\ﬁ-;—(—z—_-g-)* - C*(z ) —z !

- {(3-35)}

B which can be interpreted as the channel inversion error with

hj respect to the non-uniform weighting function

9

- W(z) = R_(2)H(z)E*(z™)) . (3-36)

_%

= Defining the new, weighted inner-product

lFor a flat message spectrum, R_(z) = 1, while for the
Markov message source of section 2.5,

| Ra(z) = -23a81nhaa
oy (z=e ") (z~-e")
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<£(z) ,g(z) >, = 5%3.§ Wiz E(2) gt (™) £,
(3-37)

we may use the Gram-Schmidt procedure1 to find a sequence of

basis functions {wk(z)}, such that
<wk(z), ¢2(2)>W = by, (3-38)

The required orthogonal basis functions are given explicitly

by the recursion formula below,

-k
z <z “’i’w \Pi(z)

Yy (2) =
-k -
z7 = ] <2, by ¥y (2)

Then the equalizer which minimizes (3-35) is just the expan-

sion

m-l1 ,-n
etz = ] <FET ¢ V(2w (2 (3-40)

with corresponding equalization error given by

-n
Hﬁ‘T”) - C‘Z’H 515/ ,,—1-(—; W <C @), ced>y
-n ,-n m-1 | ,-n , (3-41)
= < e w - ¥ (2) > '
H(z)' B W ﬁT—T k wl !

lref. [46], p. 50.

i
:
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where (3-40) has been substituted for C(z) in the last step.
The evaluation of the various inner products in Eguations
(3-39) through (3-41) requires only the simple manipulation
of polynomials of z to find residues of poles within the unit
circle, an efficient computational technique which was used
to pérform all the calculations in this section except the
case of single-notch fading, a special case which will be
treated shortly.

In the discussion of the Fourier series egualizer it was
shown that equalizer is causal for minimum-phase channels, a
reasonable result since a channel with no zeros outside the
unit disc in the z plane would be expected to have no corre-
sponding poles in its approximate inverse (the equalizer).
This was a useful property because it eliminated the need for
juggling the number of positive and negative tap gains in an
equalizer of given length to find the best combination. It

is conjectured that this property is also true for the mini-

mum mean square error equalizer. This conjecture has been
borne out in all the examples considered, but a proof could
not be found. However, its truth will be assumed in the
discussion to follow.

An analytical expression for the minimum mean-square
equalizer performance can be obtained for the case of single-
notch selective fading by noting that the optimal message
estimator given by Equations (3-2) and (3-3) must reduce to
the optimal equalizer in the limit as the noise goes to zero.

Both systems are transversal filters which minimize the mean
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square error under identical conditions, so the truth of the
statement should be apparent. The formal proof of equivalence
is omitted for the sake of brevity. We can thus obtain the
minimum mean square equalization error by letting n+« in the
‘expression for the error covariance of the optimal demodula-

tor, Equation (2-33).

-1
lim -'n'Ei H+ -2 (3-42)

n+oo

The diagonal elements of this matrix are the mean-~square
errors associated with all possible equalizers of length

T, = m seconds. The lower right-hand corner element of (3-42)
corresponds to the causal transversal filter which operates
only on the present and past values of the channel output.

In accordance with our previous conjecture on causality, this
will be assumed to be the best choice of equalizer tap gains
for a minimum«phase channel.

For single-notch selective fading channels,

- Jw, =1
1 - 1 re” 0z

,'0 <r <1,
Y1+ r? (3-43)

H(z) = h1 + h,z

the matrix (3-42) was evaluated in Appendix C. 1Its lower
right-hand corner element is given by Equation (C-24), for a

flat message spectrum.l

lThe Markov message case is also given in Appendix C but
will not be discussed in this section because it is not
directly comparable to the Fourier series equalizer, for which
an unweighted performance index, (3-23), was used.
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2
e? = (2™ 1l - x
1 - (rz)m+l

(3-44)

2
- (rz)To . 1 -

1 - (rZ)T0+1

(3-44)is the equalization error for the optimal equalizer,

valid for 0 <r <1, the condition for minimum phase. Com-

paring this result with the corresponding result for the

Pourier series channel inverter, (3-25), we see that the opti-
mal equalizer performs significantly better for severe fading
) channels, as illustrated by Figure 3-1. (D denotes the fad~-
ing depth in decibels, related to r by (2-49).) Note that

the two equalizers have assymptotically parallel error curves,

but that the "y intercept" for the optimal equalizer can ke
= much higher.

Figure 3-2 shows the performance of the optimal eguali-
zer for the two-root channel defined by (3-26) and (3-28) for
various angular separations of the roots. The dashed line

gives the performance of an optimal equalizer for a single-

notch fading channel with the same root radius, r. As was

Ty the case for the Fourier series equalizer, the performance is
dominated by the root radius, but there are oscillatory devi-
ations in the error curve similar to (3-30). The case of

multiple channel roots (w, = 0) is degenerate in that the

performance dependence is not purely exponential.
Figures 3-3 and 3~4 show equalizer performance for the

five-tap example channels of ‘section 2-1. The dashed lines
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give the performance of an optimal equalizer for a single-
notch fading channel with its root taken to be that root of
the five-tap channel closest to the unit circle. Note that
the optimal equalizer performance is rather well described by
the "equivalent” single notch channel performance; i.e., the
additional channel roots with smaller radii add only fine-
grain detail to the error curves. Again, the optimal equali-
zer is far superior to the Fourier series equalizer in cases
of severe selective fading (channels 3 and 6). This behavior
has been borne out by many more example channels which were
randomly selected; equalizer performance is basically deter-
mined by the channel root closest to the unit circle, and
Equation (3-51) may be used to roughly predict the number of
optimal equalizer taps required for channel inversion.

These results for mean-square equalization error may be
regarded as the performance of dispersive channel demodulators
when there is no noise. Let us now go back to the case of
noisy channels considered in section 3.1.

3.4 Approximate Demodulator Performance
In the Presence of Noise

When the additive noise is bandlimited and white, and
independent of the message it is easy to show that the per-

formance of either equalizer is given by

1 " 2 1 o 2
-5 Var({a-a + = c 3-45
Ug ( ) € n k;l ! kl ’ ( )
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where ¢?

is the mean-square equalization error, n is the input
SNR, and {ck} is the set of equalizer tap gains. This per-
formance is illustrated in Figures 3-5 and 3-6 for single-
notch fading channels and for two different observation

intervals. Also included for purposes of comparison is the

performance of the exact optimal demodulator (Figure 2-7).

- Some general observations may be made:

‘ 1, The optimal equalizer performs very nearly
as well as the optimal demodulator when n
is large (i.e., no post-equalization filtering
is required) .

2. The Fourier series equalizer is much infer-

ior to the optimal equalizer if deep fades
are expected.
3. When the demodulator is noise~limited (i.e.,
"""" } if ¢? is much smaller than 1/n) increasing the
observation interval actually degrades per-
formance if no post-equalization filtering
% is employed.
’ 4., For systems with low input SNR, additional
f@ noise filtering is required to make the per-
formance near-optimal, as can be seen by

looking at the case n = 10 dB.

The poor performance of the equalizers at low input SNR's,

compared to the optimal demodulator, brings us back to the

post-equalization filter approximations of Equations (3-7)
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and (3-8)._ Will a low order filter approximation of the form
shown in (3-8) significantly improve system performance?

We will consider three cases of approximation of the
form (3-8):

1. The zeroth order approximation,
Fy(jw) = C(juw) . (3-46)

2., The first order approximation,
. s v |4 1 . 012
PLGw) = c(w |1 - L c;m)lc(gw);] . (3-47)

3. The exact post-equalization filter,

— =1
F_{(jw) = C(juw) |1 + % G(w)lC(jw)lﬁ] . (3-48)

This last case could not be easily implemented, but gives a

useful assymptotic result; it tells how much degradation in

performance is due to imperfect channel inversion (equaliza-
tion) alone.

th

The estimation error for the n order approximate demod-

ulator may be calculated using the expression

n
” l [ » 2 » 2
Var(a-a) = 7 { {|]1 - Fn(]w)H(Jw)l Sa(w) + IFn(Jm)I SN(w)}dw,
- (3-49)
or by the analogous formulations using z transforms or matri-

ces. However, before giving the results of such calculations

it is interesting to consider the optimal demodulator

W}
et

G

%
Gt
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approximation from a discrete data viewpoint; this approach
lends some theoretical insight into the nature of this approx-
imation.

Equation (3-2) for the vector message estimate é may be

manipulated into the form
~ T‘ T, 1  ~I[-}
= %* * ol -

if the inverse of the singular matrix H is interpreted as the
pseudo-inverse, or Moore-Penrose generalized inverse,

gt &gt ueTy ! (3-51)

Then, if the kth column of ga is denoted by ¢y and the noise

is assumed to be bandlimited and white, the optimal estimate

of the kth message sample can be written

R -l

a = S.TE: + %s*s"j A (3-52)
where

* -

ET A ¢kT§=*T§ 1 , (3-53)
and

R 25 o n*T (3-54)

= == ==a= ®

1

Deutsch, R., Estimation Theory, Prentice Hall, Englewood
Cliffs, New Jersey, 1965, Ch. 7.
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c may be interpreted as the set of tap gain coefficients for
the optimal transversal equalizer (let n-+« in (3-59)), and

the matrix

-i1-1
ggl;];_-*-%—g_*g’lj ={';_=+%‘-B__IJ (3-55)

as a filter analogous to that of Equations (3-6) and (3-8).

The nth order approximate filter would be

— -1
n k n+l -(n+l) 1 -1
-1 -k _ _ (-1 I+ =R ’
En z kiol}?a RO l_;“ (”'T) 2 :H:—. " ] (3-56)

th

so that the n order approximate demodulator would be written

T

a =cEy . (3-57)

:[4"11

The performance of (3-64) is then given by

1 - _ kP . 1 -1
o Var(a,-a,) = l+¢,"H "R 'FE (R + - DER Hey
a
*T *T oy |
B 2(n+l) =-2(n+l)
= *T *T 1 1 =1
=1-9 H l‘;:g—(;i-) R ](g;\.;) Ho, -

In this derivation use is made of the Hermitian symmetry of
R and E.r and of the fact that they commute, It is not dif-
ficult to show that the performance of the exact demodulator

(3-52), is given by
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1

~ - l _1
;E-Var(ak-ak) =1 - &y H ~(R+ = 1) gik .
2 (3-59)
Thus the quantity,
1 . L *T T -2 (n+1) 1 ., -1
nl (n+1) ‘?Lk H'R (-B—- + n L) E?;k ’

which appears in (3-58) can be interpreted as the additional
demodulation error caused by truncating the matrix filter
approximation. This error goes to zero as the 2(n+l{th power
of the input SNR, n.
Now let us examine the performance of the various approx-
imate demodulators given by Equations (3-46) =~ (3-48).
Tables 3-1 to 3-3 give demodulator performance (the output
SNR in decibels) for various channel configurations, input
SNR's and observation intervals; the message source is Markov,
and the noise is white. The columns labeled one through
seven give the output SNR's for the following demodulator
confiéurations:
1. The optimal, finite observation time demodu-
lator.
2. The optimal transversal equalizer fpllowed by
the exact post-equalization filter,
3. The optimal transversal equalizer followed by
the first-order post-equalization filter.

4., The optimal transversal equalizer alone.
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Table 3-1. System Performance for Single-Notch, Band-Edge

Pading.
D To n o System Combination Number
(@B) (sec) (B 1 ZzZ 3 & 5 6 1
7 10 10 9.7 9.7 8.4 7.8 9.7 8.4 7.8

20 1.1 18,1 18.1 17.8 18.1 18.1 17.8
30 27.8 27.8 28,8 27.8 27.8 27.8 27.8
40 37.8 37.8 37.8 37.8 37.8 37.8 37.8

20 10 9.7 9.7 8.4 7.8 9.7 8.4 7.8 —
20 8.1 18,1 18.1 17.8 18.1 18.1 17.8 o
30 27.8 27.8 27.8 27.8 27.8 27.8 27.8 o
40 37.8 37.8 37.8 37.8 37.8 37.8 37.8
23 10 10 8.8 8.6 =-9.9 2.2 6.2 -15.7 0.2
20 13.6 13.2 12.9 1l.6 7.9 7.4 6.9
30 18,1 18,0 18,0 17.8 8.9 8.9 8.9
40 19.5 19.5 19.5 19.5 9.1 9.1 9.1
20 10 8.8 8.6 ~16.6 0.6 8.2 -18.,0 0.2
20 14,1 13.0 11.1 10.6 11.9 9.8 9.6
30 20.5 20.4 20,4 20,1 16.4 1l6.4 16.4
40 27.0 27,0 27.0 27.0 18,1 18.1 18.0
30 10 8.8 8.6 -18.0 0.3 8.6 ~18.2 0.2 ‘
20 14,1 13.0 10.4 10.3 12.8 10.2 10.1 1
30 20,9 20.9 20.6 20,2 19.8 19.8 19.5 o

40 29.9 29.7 29.7 29.7 25.6 25.6 25.6

44 10 10 8.8 8.4 -11.3 1.7 1.2 -26.8 -4.2
20 13,0 11.9 12,1 10.1 1.0 =-0.6 0.0
30 14.5 14.3 14.3 14,1 1.0 0.9 0.8 )
40 14.9 14.8 14.8 14.8 0.9 0.9 0.9 :
20 10 8.8 8.5 -23,0 =1.2 1.7 -35.9 =6.0 2
20 13,7 11.9 7.6 8.4 1.7 =-6.2 0.0 r
30 16.9 16.2 16.2 15.6 1.8 1.8 1.5
20 18.6 18.0 18.0 18.0 1.8 1.8 1.7
30 10 8.8 8.5 -29.0 -2.9 2.3 -40.4 -7.0
20 13.7 11.6 2.0 6.9 2.4 -10.3 0,0
30 17.9 16.4 16.5 15.5 2.6 2.6 2.3
40 20.2 19.8 19.8 19.7 2.6 2.6 2.6
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(dB) (sec)

81

System Performance for Single-Notch, Center-Band

Fading.

n
(db)

7 10

20

23 10

20

30

44 10

20

30

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

1

8.5
17.9
27.8
37.8

21.0

System Combination Number

< 3 4 2 [
8.5 8.4 7.8 8.5 8.4
17.9 17.9 17.8 17.9 17.9
27.8 27.8 27.8 27.8 27.8
37.8 37.8 37.8 37.8 37.8
8.5 8.4 7.8 8.5 8.4
17.9 17.9 17.8 17.9 17.9
27.8 27.8 27.8 27.8 27.8
37.8 37.8 37.8 37.8 37.8
4.5 2.7 109 3.7 -105
9.5 9.5 9.2 7.5 7.5
11.8 11.8 11.7 8.9 8.9
12,1 12.1 12.1 9.1 9.1
4.4 -2.,1 0.6 4,2 -3.4
10,9 10.9 10.3 10.3 10.3
18.1 18.1 18.1 16.3 16,3
21.0 21.0 21.0 18.0 18,0
4,3 -3.4 0.3 4,3 =3.6
10.9 10.9 0.3 10.8 10.8
20,0 20.0 19.9 19.5 19.5
27.5 27.5 27.5 25.6 25,6
3.6 2.5 0.7 1.3 -12.4
6.2 6.2 5.7 1.2 1.5
6.8 6.8 6.8 0.9 0.9
6.9 6.9 6.9 0.9 0.9
3.6 _7.9 ""1.5 103 —21¢7
6.2 7.6 6.3 1.9 1.9
6.8 2.5 9.4 1.8 1.8
6.9 9.9 2.9 1.8 1.8
3.6 -14.3 -3.0 1.5 -26.3
7.4 7.4 5.9 2.4 1.3
11.1 11.1 10.9 2.6 2.6
11.9 11.9 11.9 2.6 2.6

7.8
17.8
27.8
37.8



Table 3-3.

Channel
No.

Ty
(sec)

n
(db)

1

10

20

10

20

10

20

10

20

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

1

8.5
16 .4
26,0
36.0

8.5
16.4
26.0
36.0

9.2
17.4
27.1
37.1

9.2
17.4
27.1
37.1

8.2
13.8
16.6
17.0

8.2
14.9
21.1
23.2

8.0
14.9
18.5
18.9

WN =

W W
L L L) L ]
»OUTN

System Combination Number

Z
8.5
16.4
26 .0
36.0

8.5
16.4
26.0
36.0

9.2
17.4
27.1
37.1

9.2
17.4
27.1
37.1

8.2
13.8
16.6
17.0

8.2
14.7
21.1
23,2

7.9
14.6
17.9
18.4

8.0
16.5
26,0
33.4

2
6.6
16.4
26.0
36.0

6.6
16 .4
26 .0
36.0

7.7
17.4
27.1
37.1

7.7
17.4
27.1
37.1

6.2
13.8
16.5
17.0

2.7
14.7
21,1
23,2

7.4
14.6
17.9
18 .4

7.4
16.5
26.0

33.4

2
6.0
15.6
26.0
36.0

6.0
16.0
26.0
36.0

7.1
17.1
27.1
37.1

7.1
17.1
27.1
37.1

5.7
13.5
16.5
17.0

4.7
14,2
21.0
23.2

6.4
14.5
17.9
18.4

6.4
16.3
26 .0
33.4

2

8.5
l6.4
26.0
36,0

8.5
16.4
26.0
36.0

9.2
17.4
27.1
37.1

9.2
17.4
27.1
37.1

7.5
11.5
13,0
13.2

7.5
12.6
15.7
16.3

7.0
11.6
13.0
13.2

8.0
16.5
25,9
32.9

1
6.6
16.4
26.0
36.0

6.6
16 .4
26 .0
36.0

7.7
17.4
27.1
37.1

7.7
17.4
27.1
37.1

2.4
11.5
13.0
13.1

l.1
12.6
15.7
16.3

6.6
11.6
13.0
13.2

7.4
16.5
25.9
32,9
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System Performance For Five Tap Example Channels,

6.0
15.6
26,0
36.0

6.0
16.0
26.0
36.0

7.1
17.1
27.1
37.1

7.1
17.1
27.1
37.1

4,1
10.9
12.9
13.1

3.9
12.1
15.7
16.3

5.6
11.5
13.0
13.2

6.4
16.3
25.9
32.9




4
/
|

Siisiosnicd

Table 3-3., (Continued)
Channel T n
No. (sec) (db) 1
5 10 10 6.6
20 12.2
30 18.6
40 20.9
20 10 6.7
20 12.7
30 21.5
40 29.5
6 10 10 9.2
20 14.9
30 17.2
40 17.7
20 10 9.3
20 16.0
30 21.1
40 22.4

System Combination Number

2
6.3
12.2
18.5
20.8

6.2
12.5
21.4
29.5

8.8
14.8
17.2
17.4

8.7
15.7
21.1
22.4

3
"309
12.1
18.5
20.8

-4.5
12.4
21.4
29,5

8.0
14.8
17.1
17.4

3.3
15.7
21.1
22.4

2
1.8
11.4
18.4
20.7

1.6
11.6
21.3
29.5

7.2
14.5
17.0
17.4

6.0
15.2
21.0
22.4

2

6.1
11.7
17.1
18.7

6.1
12.2
19.9
23.9

P
b
& ° L] ®
NNO

8.1
13.1
15.3
15.7

5
"'4.5
11.7
17.1
18 .7

-4,6
12.1
19.9
23.9

2.4
11.0
11.7
11.7

-1.7
13.1
15.3
15.7

83

1.6
10.9
17.1
18 .7

1.6
11.4
19.9
23.9

4.8
10.3
11.6
11.7

4,5
12.2
15.2
15.6
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5. The Fourier series equalizer followed by

the exact post-equalization filter.

6. The Fourier series equalizer followed by

the first order post-equalization filter.

7. The Fourier series equalizer alone.

Careful examination of the data in these tables leads one to
conclude that a low-order post-equalization filter is not a
worthwhile addition to the system; improvement in performance
is obtained only over a limited range of n, and the resultant
improvement is slight. Also, if the equalization is poor
(small T, and deep fading), the performance exhibits a severe
threshold effect for low n, and the performance is worse than
that of the equalizer alone (itself poor). Consequently, if
optimal or near-optimal performance is required for low input
SNR's, it istapparently necessary to use the optimal demodu-
lating system with all its attendant complexity; simple
equalizers are not sufficient.

For high input SNR (n > 25 dB) it is clear from the
tables and also Figures 3-5 and 3-6, that the minimum mean-
square transversal equalizer is nearly optimal, and that it
is distinctly superior to the Fourier series (zero-forcing)
equalizer. Since this optimal equalizer can be mechanized
with only a modest increase in hardware as compared to the
zero-forcing equalizer (see [26] through [28]), it is
regarded as the most promising compromise between system com-

plexity and system performance.
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The observation interval (number of equalizer taps)
should be chosen so that the equalization error is of the
same order as the reciprocal of the input SNR (see Equation
(3-45)) . Additional observation time will only increase the
noise output of the system, a reflection of the fact that the
equalization has converted the channel from a dispersion-
limited one to an additive-noise-limited one. The noise at
the equalizer output is highly "colored," and only sophisti~-
cated filtering (i.e., the optimal demodulator) will improve
the low SNR performance,

In the rest of this research we will consider only the
two most promising systems,

1., The optimal demodulator, because it is the

only system considered which works well for
all SNR, and is of interest of its own
right.

2. The optimal transversal equalizer, because
it is much simpler to mechanize than the
optimal demodulator, and its performance
approaches that of the optimal demodulator
for high SNR.

3.5 A summary of Results for Known Dispersive
Channel Demodulation

The optimal vector estimator for the message is given by

Equation (3-2) to be (for white noise)
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A u*T 1  -1]-1 *T
Q-Ei_ !_I_:-i--ﬁ-ga]Hx ' (3-60)

and its performance given by (2-33),

il

— -1
2t Locoviga = Mg+ 2ol . Gee)
; L i

An alternative form given by Equation (3-~50) permits the kth

element of a to be written

-1

2 o ET *T *T 1

a, = ¢ H E? e H o+ ﬁ'%l v (3-62)
with error variance given by (3-59):

1 « _ *q_*T *
;g-Var(ak—ak) =1- ¢ H [; ¢ H "+

e

S
(=4

1

hm

|

where ¢, is the kP

column of LI
The estimate of the message obtained using the optimal

transversal equalizer is the expression (3-62) in the limit

as n»», i.e.

A *q % wrf -1
a, = ¢ B Ei-gai] y (3-64)

it
10
<

where ¢ is the set of equalizer tap gain coefficients. The
performance, in the presence of noise, of this equalizer is

given by (3-45), or by setting n=0 in (3-58).

b
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(3-65)

eZ(TO) is the equalization error, the residual error due to

the finite observation interval as the noise goes to zero
(n+=) , It can be seen from (3-63) that the performance of
the optimal message estimator also approaches ez(To) as noe,

These equations, (3-60) through (3-65), are the funda-
mental equations for predicting system performance. The opti=-
mal demodulator performance as calculated using (3-61) or
(3-63) has the general form shown by curve 1 of Figure 3-7.
As n»= the performance approaches the equalization error,
sz(To). The optimal equalizer performance, (3-65), is of
the form shown by curve 2 of Figure 3-7. I1ts performance
coincides with that of the optimal demodulator for large n,
but for noisy systems the performance drops off linearly (in
dB) as.indicated by the second term of (3-65).

The height of the equalization error assymptote, curve 3,
may be raised by increasing the observation interval Ty. If
Ty, is made sufficiently large, then the bending toward this
assymptote of the demodulator performance can be made to
occur at values of n outside the range of interest for design
purposes, and the system will be effectively noise-limited
rather than limited by residual dispersion. Under this con-

dition, the observation interval may be regarded as infinite,
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and we may use the result for optimal demodulator performance

given by (3-24), and rewritten here using z transforms:

1 dz
1 -1, .7z
H*(z%*;Ra(m

Var(a(t)-a(t))= =
(3-66)

1
n

miJH

. L f
3 Jhe )

This is shown as curve 4 in Figure 3-7. The performance is
the same as for the finite T, optimal demodulator at low SNR,
but continues to depend linearly upon n for large n, 3 conse~-
quence of the infinite observation time. Note that (3-66)
requires only modest effort to evaluate (compared to (3-60)
through (3-65)) and can often be performed analytically.

Note also from Figure 3-~7 that an optimal equalizer with
a sufficiently large observation interval has a performance
curve of the same slope and intercept as the linear part of
curve 4, so that the optimal equalizer has its performance
under noise-limited conditions given by the assymptotic form
of (3-66), i.e.,

L var(a(t)-a(e)) =
Ya

=8

.1 § 1 dz
I3 T iz H*(z) 2

(3-67)

The constant

————

1 é 1 dz
217 H(zhl)H*(z) z
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is just the intrinsic loss in performance of a dispersive
channel relative to a non-dispersive channel (see curve 5 of
Figure 3-7) which was discussed in Section 2.5.

Examination of the assymptotic behavior shown in Figqure
3-7 is reminiscent of the familiar Bode diagraml used in
linear control theory to make rapid frequency response calcu-
lations, and suggests the following approximations for demod-
ulator performance. The expression

1 1 1 dz

l ~
—— VvVar(a(t)-a(t)) bl . ee
o2 n 2nJ H(z Y )H*(2) + LS R™Y(z) ?

a n ~a

+ eZ(TG)

(3-68)

could be used for optimal demodulator performance calcula-

tions, and the expression

var(a(t) -a(t)) = T (3-69)

= E

1 é 1 dz e
Zn3 H(z ')H*(2)

2 0
a
for the optimal transversal equalizer.

These expressions are excellent approximations to the
exact performance equations, but are much easier to compute
since the effect of the finite observation interval is iso-
lated from the effects due to noise. The integrals of (3-68)
and (3-69) may be evaluated using residue calculus, and the
equalization error may be approximated using the method of an
"egquivalent" single-notch channel discussed at the end of

Section 3.3. That is, we factor a high-order channel into a

product of first order (single-notch) channels and compute

1Bower, J. L., and P. M, Schultheiss, Introduction to
the Design of Servomechanisms, Wiley, N. Y., I958, Ch. 6.

St
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the equalization error for that single-notch channel with its
root closest to the unit circle, using Equations (C-24) and
(C-26) of Appendix C.

This technique requires only modest computations and

permits rapid design calculations of reasonable accuracy.
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CHAPTER 4: CHANNEL MEASUREMENT

4.1 Introduction

In this chapter techniques for the measurement of dis-
persive channels will be discussed. There are two basically
different approaches to the problem of channel measurement:
systems which measure the channel using the information-
bearing signal alone; and systems which use a specially
designed reference signal to measure the channel. It will be
shown that the latter method leads to far simpler estimating
systems than does the former, and that the difference in per-

formance between the two is not very great. Optimal trans-

mitted reference systems will be derived and analyzed, includ-

ing the reference signal design, and some excellent suboptimal

systems will be discussed as well.

4,2 Channel Estimation Using the Information-Bearing
Signal Alone

The results of this section have been carried out using
the sampled-data formulation of the dispersive channel demod-
ulation problem as discussed in Section 2.4, The derivations
are more straightforward and more easily interpreted using
this formulation, and the resultant estimation scheme would

probably have to be implemented on a digital computer anyway.
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The observed channel output can be written in the form

et

a+n-=

>

Yy = f_l"' I\_]' (4-1)

where N, H, and a are as defined in Section 2.4, and

. (4-2)

|
(]

g
i

It is desired to estimate both the unknown vectors a
and h on the basis of the observed channel output, y, and
prior knowledge of the statistics of the message a. It will
be assumed that h is an unknown, but non-random, parameter
vector, so that no prior knowledge of h is available. The
method of estimation will be to find the joint maximum 1lik- -
lihood estimate of the message and the channel state, i.e.,

1

maximize the probability density function pla,y/h). If the

noise is assumed to be bandlimited and white, with variance

2
UN,

ing forms using (4-1) and (4-2).

then this density function can be expressed in the follow-

lThe joint probability density of the message a and
observation y conditioned on a known channel, h.
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p(a,y/h) = K(ylexp{- — (y-Ha)"(y-Ha) - = a" s.;le}

(4-3)

|

= K(y)exp{- — (y-ah)T(y-ah) - L%

S

K(y) is a constant not explicitly dependent upon a or h. The
optimization is carried out by setting the gradient of the
logarithm of (4-3) equal to zero,l leading to the following
set of simultaneous equations for the message and channel

estimates, which are indicated by circumflex.

~ _ [T 1 =-T]-t.r
E—E_i:g-f--n-ga:l H'y (4-4)
h [é?élflé?z (4-5)

This is a set of nonlinear equations, so there is no assur-
ance that a solution exists, or is unique, but, even assuning
such a solution could be found the indicated estimation pro-
cedure is a very complicated one indeed. It requires such
extensive data storage and processing that a digital computer
would surely be required to perform the estimation. An iter-
ative solution seems the only practical method to solve such
a system, so real-time data processing would require an

extremely fast computer if the message bandwidth (sampling

lDeutsch, R., Estimation Theory, Prentice Hall, Englewood
Cliffs, New Jersey, 1965, Ch. 3.

1
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rate) is large. This rules the technique out for all but the
largest, most specialized communications terminal applica-
tions.

The primary reason for considering this channel measure-
ment technique at all is that it leads naturally to consider-
ations of the Cramer-Rac lower bound [33] on the variance of
unbiased estimators of the required parameters. This bound
is useful for comparing with the performance of transmitted-

1 that

reference channel measurement systems. It can be shown
the error covariance matrix of any unbiased estimate of the

parameter vector,

must satisfy the matrix inequality,

cov(é-e) -1 ' >0 , (4-6)

where the inequality is taken in the sense that the matrix on

the left side be positive semi-definite, and I is the infor-

mation matrix defined below. This is particular implies that?

lRao, C. R., Linear Statistical Inference and Its Appli=-
cations, Wiley, New York, 1965, p. 265. (The theorem as
stated in this reference applies to conditional parameter
estimates. It is easily extended to unconditional estimates
by using the joint density function instead of the condi-
tional, and interpreting expectations to be over the a-priori
den31ty of the message as well as the noise.)

2Hoffman and Kunze, Linear Algebra, Prentice Hall,
Englewood Cliffs, New Jersey, 1961, p. 252.
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var(6.-68.) > [;f{] (4-7)
11 =& di

That is, the diagonal elements of Lfl give a lower bound on

the error variance of any unbaised estimate of these para-

meters. The information matrix, I, is defined as follows.

= 32en pla,y/h)

It is convenient to rewrite this using gradient notation.l

i~

T

This can be expressed in the partitioned form below.

o —y

Ty (7 tn pla,y/m 17T, v, [7n pla,y/h) 17
I = -E (4-10)

VE[Viﬂ,npﬁgyy_/E)]T , Tplrygn pla, /ny 17T

Equation (4-3 may be used to show that

1 .7 1.7 1 -7t
7, tn pla/m) = L y_-[;f i+ L ga] 2
- N a
(4-11)
1 7. 1 T
y 0 pla,y/h) = oI Ay - ;g‘é Ah (4-12)

1See Deutsch, R., Estimation Theory, Prentice Hall,
Englewood Cliffs, New Jersey, 1965, Ch. 3.

.
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The off-diagonal partitions of (4-10) have zero expected
value. This can be seen from (4-11) and (4-12) since the
random vectors a and y appear linearly, and have zero mean,.
The diagonal partitions of (4-10) are gotten by taking the

second gradients of (4-11) and (4-12).

T 1 T 1 -
VE[VE in p(g_,z_/tl_)] = - '(%— H __g - (—y-g' ga , (4-13)
T 1 T
VE[VEILn p(_@_, /_}]:)] = e ;1%- é é (4-14)

Thus the information matrix can be expressed in the form

below.

Q

zo|
m
If i3
e
+
pN
i
o i
b
=)

(4-15)

i
i

i
fes|
|
Ma
Zno|
o 3
]le

Examination of the definition of the matrix A, Equation (4-2),

indicates that

2
1 T _oa ]
7 E,la Al = = To &y
N - N

where T, is the number of observations of the channel output

(observation time) and g; is the normalized covariance matrix
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of an nc—dimensional vector of message samples. If the ratio

n=o§/o§ is interpreted as the input SNR, then, by (4-6),

—=1

o

F&Z

COVF-—:J > 17t = , (4-16)
he
24 1,

nTy, =a

=

If the upper-diagonal partition of (4-16) (the message
érror~covariance) is compared with Equation (2-33), it can be
seen that the lower bound on the error of the message portion
of the joint estimation scheme is equal to the performance of
the optimal message estimator for a known channel. It would,
however, be impossible for the joint estimator to achieve this
bound with a finite observation interval since the channel
is not known perfectly.

The bound on the channel measurement,

Cov(h-h) = = o . (4-17)

is more realistic in that the error goes down in inverse pro-
portion to the length of the measurement interval and the
input SNR. If, in Equation (4-5) for the channel estimate,
it were assumed that the message estimate, é, were perfect,
then it can be shown that (4-5) achieves the lower bound
(4~17) . In any non-ideal joint channel and message estimate
there will always be some residual message estimation error,

so the channel estimates will not be this good. However,

. ;%
ﬁ

S

Sz
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some crude, approximate calculations have indicated that the
bound is unlikely to be more than an order of magnitude opti-
mistic, and could quite conceivably be within a few decibels
of actual performance if the input SNR is high.
The following observations concerning chénnel estima-
tion using the information-bearing signal are in order.
1. This type of estimation is desirable in that
all transmitter power goes into information
transmission,
2. Joint estimation of channel and message is
complicated. The estimate is nonlinear,
requires an iterative or sequential solution,
and could not be done in real time on large
bandwidth channels with existing computer
hardware.
3. The performance of this scheme is somewhat
in doubt. There is no assurance that a
solution will exist, or that a sequential
procedure would converge to the solution if
it did exist.
4, The drawbacks of such a scheme indicate that
an investigation of simpler, transmitted-

reference techniques is merited.

4.3 Channel Estimation Using Transmitted Reference Signals

The physical system required to measure the state of an

unknown, dispersive channel may be greatly simplified if a
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reference signal, known in advance at the receiver, is trans-
mitted over the channel for the express purpose of making this
measurement. Such a signal would be multiplexed with the
information-bearing signal, and channel measurements made at
time intervals consistent with the time variation of the
channel. One method of performing this multiplexing is by

time division. A short measurement signal could be periodic-

ally alternated with the message to keep the receiver informed

of the true channel state. Another method of multiplexing is

frequency division; single-sideband techniques could be used

to transmit the reference signal on one sideband and the mes-

sage on the other: the sidebands used would be periodically

Bpinscriis

alternated. Longer measurements would be possible with the
latter system without interrupting the information flow. %

(With a longer time interval it is possible to achieve larger

signal signal energy for a given signal power.)

With either of the multiplexing schemes described it is

possible to independently isolate the message and reference
signals at the receiver, regardless of the channel state. g

The channel output due to the reference signal input can then

]

be written
y(t) = h(t)ca s{t) + N(t), (4-18)

where s(t) is a known (possibly complex) reference waveform.

When the tapped delay line channel model is assumed, (4-18)

can be written in the following, more convenient form.
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y(t) = h' s(£) + N(t) = s° (t)h + N(t), (4-19)

where

h, 7] [s(t)
h, s(t-1)
h=|. . ste) = |. (4-20)
h s (t-T )
_nq_ L c_

The maximum likelihood technique for estimating a finite
set of unknown parameters is well knownl to be equivalent to

the minimization of the functional
T
m T 2
L(h) = ly(t) - h's(t)|at . (4-21)
0

Equation (4-21) assumes that the channel output is observed
over the time interval 0 < t < T and that the additive
noise is essentially white. Here Tm denotes the measurement
time. A necessary condition (it is also sufficient since
L(h) is convex) for the minimization of L requires that

T
I T T R
0 = vL(h) =9 | [y(t) - h's(®]ly(t) - h's(t)]*dt
- o
7 (4-22)

m T
- -z[ [y(t) - hTs(8)1* s(t) at .
0

1Helstrom, Statistical Theory of Signal Detection,

Pergamon Press, London, 1360, p. 199.
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This equation may be solved for h to provide the following

channel estimate.

iy -1

m T Tm
= f s*(t) s' (t)dt [ s*(t) y(that .
0 ]

jo

(4-23)

Suppose that s(t) satisfies either of the following condi-
tions:
l. If s(t) is periodic, then Th is a multiple
of its period.
2., If s(t) is aperiodic, with duration Tgr
then Tm > TS + Tc' where Tc is the channel
delay spread. (See Section 2.1)

Then the following identification is possible.

T

m T
J s* (t) s (t)dt = E_ R (4-24)

0

Here E; denotes the total signal energy, and R, is the (ncxnc)

matrix of time samples of the normalized signal autocorrela-

tion function. That is,

EB’s]ij S Psmh

where

T

m .
pg (1) = é; f s(t)s* (t+1)dt . (4-25)
0
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The optimal channel estimator then has the interpretation of
a system which crosscorrelates the observed signal with vari-
ous delayed replicas of the reference signal, and then per-

forms a known linear combining operation on the correlator

outputs to form the channel tap-gain estimates. This is a

much simpler system than the joint channel and message esti-
mator, and may be easily implemented with analog components.
The performance of the channel estimator is of great

interest. Note that (4-23) can be rewritten in the form,

T
-1 -1 T
h = = R s*(t) [s" (t) h + N(t)ldt
(4-26)
In
= h + %_ R_lj s* (£)N(t)dt .
_— =g —
s
0
It then is easy to see that the estimator is unbiased,
E(h} =h , (1-27)
and that
" 1 - Tm Tm T -1
Cov(h-h) = =— R} B J I s*(t)s  (tIN(t)N*(1)dtdr R
— E2==s = -
s 0 0
o2
= N g7} (4-28)

E =s
s
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Note that the measurement error decreases as the signal
energy~-to-noise power ratio (measurement SNR) increases, and
that this error depends upon the choice of the reference sig-~
nal through the correlation matrix Rgv given by Equation
(4-25). This dependence upon the reference signal leads
naturally to the investigation of the design of these signals

to minimize the measurement error.

4.4 Optimal Choice of Reference Signals

Equation (4-27) shows that, for a given signal energy,
the measurement error covariance depends upon the reference
signal only through the signal autocorrelation function.
Under the assumed normalization condition on 53’ Equation
(4-24) , the diagonal elements of R, must be unity. Also,
since gs is the correlation matrix of a physical signal with

positive power spectrum, it must be a positive semidefinite

matrix.l It may thus be factored2 in the following way,

= RE %
56 = 55 . gs ’ (4-29)
where the "square root" matrix, Rz, is Hermitian and positive
semidefinite. With the assumed normalization, and with the

factorization (4-29), the signal optimization problem is

lPapoulis, Probability, Random Variables, and Stochastic
Processes, McGraw-Hill, New York, 1965, p. 349.

2Riesz, Sz .-Nagy, Functional Analysis, Ungar, New York,
1955, p. 265.
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mathematically equivalent to the theorem of Raol which states

that
R_] > 1 , (4-30)

waly o g —
11

where the equality holds if

il
=

(4-31)

%‘«'ﬂ

This implies that the measurement error variance is minimized
by choosing R_ as in Equation (4-31); and, under this condi-
tion, the measurement errors for different tap-gains are

uncorrelated. That is,

Cov(h-h) = = I (4-32)

o2
-
ES =
The optimality condition on the reference signal thus
reduces to the following restriction on its normalized auto-

correlation function, pS(T).

l1; 1t =0
os(r)= (4-33)

0; It = 1,2, .o,

For pulse train signals of unit width this means that s(t)
must have zero autocorrelation out to a value of delay equal
to the channel delay spread, Tc = nc-l, and is arbitrary

beyond that point. This is illustrated in Fiqure 4-1.

1

Rao, Linear Statistical Inference and its Applications,
Wiley, New York, 1965, p. 194,
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Figure 4-~1. Autocorrelation Function of Optimal Reference
Signal.
For signals which satisfy (4-31), the linear combining
operation in the channel estimator, (4-23), is no longer
required, so the estimating system reduces to a simple bank

of crosscorrelators, as shown in Figure 4-2,

4.5 Design of Reference Signals

Condition (4-33) for the optimal reference signal
defines classes of signals rather than the éignals themselves,
There is a consequent freedom of choice in picking the refer-
ence signal, and this freedom may be used to satisfy addi-
tional constraints imposed by practical systems. There are
two broad classes of reference signals which can be consid-
ered:

1. Aperiodic, "one-shot" signals are useful for

time-division multiplexing of the message
and reference.

2., Periodic Signals are convenient when long,

continuous measurements of the channel state

Poan

s
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are possible, as in the case of the frequency-

division multiplexing discussed in Section 4-3.
In either of these cases it is convenient to use pulse-train
signals for reference signals. The nominal signal bandwidth
is easily controlled by the duration of an individual pulse
in the train of pulses. (One second duration using the time-
frequency normalization assumed in this research.) Also,
pulse signals are easier to store, generate, and synchronize
than more general waveforms; only a finite set of numbers are
required to describe the signal. It will also be assumed in
the discussion to follow that the reference signals are real.
Real signals are a logical choice since the reference signal
would normally be generated at baseband, where the representa-
tion must be real. An exception would be the case of SSB,
where the baseband representation has an imaginary part which
is the Hilbert transform of the real part. However, it is
well known1 that the autocorrelation function of the Hilbert
transform of a signal equals the autocorrelation function of
the signal itself, so the SSB version of a signal will be

optimal if and only if its real part is optimal.

Aperiodic Signals
1. The simplest form of optimal reference signal
is a single pulse (bandlimited impulse) with

autocorrelation function of the form shown in

lSchwartz, Bennett, Stein, Communication Systems and
Techniques, McGraw-Hill, New York, 1966, p. 34.

i
e
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Figure 4-3, This signal is disadvantageous

because it has low energy for a given peak

power and measurement interval. Since, by

(4-27) , the measurement error is inversely

proportional to the signal energy contained

in the measurement interval, and since trans-
mitters are normally limited in peak power, this
is a serious drawback. If Ps denotes the max-
imum available peak power, then the total

energy is given by

E = P ® (4"34)

2. A better class of optimal signals is the set
of "impulse equivalent pulse trains," or
Huffman codes {47]. These are amplitude mod-
ulated pulse trains with autocorrelation
functions as shown in Figure 4-4. 1If, for a
given channel delay spread, the length of a

; Huffman code is at least one second longer,

then these codes are optimal. Huffman codes

up to length 14 have been investigated in
this research to determine their energy distri-
bution, and it has been found that average-to-

peak power ratios on the order of 0.40 to 0.55

can be achieved. The achievable ratio tends

downward as the codes get longer. For these
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signals the signal energy available with peak

power Ps is
Eg =K .« T  «P , (4-35)

where Ts is the signal duration and K is the

average-to-peak power ratio. Thus, with a
modest increase in the measurement time, much
lower measurement errors are possible than
with single impulses,

3. A signal class which is suboptimal, but very
good, is the set of Barker codes [48]([49].
These are biphase (+1), constant-envelope
signals with autocorrelations shown in Figure
4-5, These codes exist only for certain
lengths (< 13 and odd), but the idea will be
generalized to longer codes in the next para-

graph. The fact that the out-of-phase corre-

lation of these signals is not zero causes
;3 a degradation in the measurement error, (4-27)
y but this loss is slight. 5;1 has been computed
for all signals with the Barker property up
to length 13, and for all channel delay spreads,

T such that Tc < Ts. The worst case of degra-

cl
dation in measurement variance occurred when

. =1
Tc = 5 and Ts = 5; a diagnal element of gs

with value 1.0714 occurred, corresponding to
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a 0.3 dB loss in performance compared to the
optimum. This is clearly a negligible effect
when the average-to-peak power ratio of unity

for these signals is considered. That is,

E, =T, « P (4-36)

Thus, for a given signal duration, Ts, and a
peak-power limitation, Ps' the suboptimal
Barker code performs on the order of 3 dB
better than the "optimal® Huffman codes.

The fact that the optimal autocorrelation
function is restricted only for delays up to
the channel delay spread, Tc’ allows the
Barker property to be extended to longer
codes. That is, we can attempt to find
bipolar binary sequences with the autocorre-
lation property shown in Figure 4~6. These
would be "equivalent Barker codes" for the
purpose of channel measurement. Such codes
do indeed exist, and can even be generated

by shift registers if PN sequences [44] are
used in aperiodic fashion as the code words.
Appendix D gives a listing of suitable cyclic
permutations of PN sequences up to lengt 83,
together with their aperiodic autocorrelation

functions. It seems reasonable to assume that

-
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a more general class exists for arbitrary

code lengths,

Periodic Reference Signals

1. Tompkins [50] has investigated the existence

of periodic ternary sequences (+1, 0, -1) up

7 to length 26 which have zero out-of-phase cor-
relation, as in Figure 4-4, These codes

mﬁ were found to have many zeros, resulting in

poor average-to-peak power ratios. They are

consequently unsuited for channel measurement.

However, his investigation did show that

there are no binary sequences with lengths

between 4 and 26 whose periodic autocorrela-

““““ tion functions are of the form of Figure 4-7,

One is thus led to remove part of the autocor-

relation restriction and investigate the

. existence of "almost uncorrelated" periodic

binary sequences with the property shown in

Figure 4-8. This signal class has a single

out-of-phase peak in its autocorrelation func-
tion, occurring at one-half the period, and
its height was found to be 4/Ts. Some element-

ary logical considerations show that any

periodic binary sequence which has zero corre-
lation at unit delay must be an integral mul-

tiple of 4 in length. An exhaustive search
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b
i

for such sequences was carried out for
lengths of 4, 8, and 12, and they were found

to exist. Table 4-1 gives one example of

Table 4-1. Listing of Almost Uncorrelated Periodic Sequences,

Code Length Sequence
4 +1 +1 +1 -1
i% 8 +1 -1 +1 +1 +1 +1 -1 -1
12 +1 -1 +1 -1 +1 +1 -1 -1 +1 +1 +1 +1

such sequences for each of the lengths inves-
WZ tigated. (Any cyclic permutation or time
m? reversal of these examples would also be in
the class.) The search for these sequences
was not carried out for longer codes because
the exhaustive search is very wasteful of
o v computer time, and because it was found that
PN sequences perform nearly as well for chan-
et nel measurements.,
‘? 2. PN sequences [44] have autocorrelation func-
tions of the form shown in Figure 4-9. These
are not optimal signals, but their out-of-
phase correlation is quite small if the
sequence is long. The degradation due to the

nonoptimality of the signals can be computed

analytically using Rao's result.l

1Rao, Linear Statistical Inference and its Applications,
Wiley, New York, 1965, p. 54.




116

Tc-l

(4-37)

- 1- T
R

s s

Tg is the signal period, and Tc is the channel
delay spread. This expression can be seen to
rapidly approach unity for TS >> TC > 1. Thus
PN sequences differ negligibly in performance
from optimal signals is the measurement period
is much longer than the channel delay spread.
The ease of generation of these signals,
together with their near-optimal performance,
makes them the most likely candidates for
reference signals in any practical communica-
tion system.

Both the periodic signal classes discussed have constant

envelopes, so their total energy is just

ES = Tm . Ps . (4-38)

Tm denotes the total measurement time. (A multiple of the
signal period.) It is thus possible to trade signal power
for measurement time and simultaneously keep the measurement
error fixed. Since, in a frequency-division multiplexing
scheme, the only limitation on measurement time is the rate
of channel time variation (the information flow is continu-

ous), it is possible that only a negligible amount of

i
l

[EE—
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transmitter power need be devoted to channel measurement if
the channel is slowly varying. This will be shown to be the

case in the next chapter.

4,6 Summary

In this chapter the general problem of channel measure-

ment has been investigated. It was shown that channel esti-

mators which make use of only the information-bearing signal
o require an exceedingly complex, impractical physical mechan-

ization. This technique does however lead to the investiga-
K? “““ tion of lower bounds on the variance of any channel estima-
tion scheme, for fixed transmitted power.

Great simplifications in the measurement system can be
obtained if a known reference signal is transmitted for the
express purpose of measuring the channel. The optimal esti-
mate of channel state for systems of this type was derived
and analyzed, and a criterion for the joint optimality of
. both the channel estimator and reference signal was found.
Signals optimal with respect to this criterion were found,

- and they were compared on the basis of fixed peak transmitter

e power. Near optimal signals were also considered, and their
performance analyzed.
These investigations lead to the conclusion that the

channel measurement system which best combines performance

with simplicity is, in all probability, a frequency-division
multiplexed, transmitted-reference system which used periodic

PN sequences for reference signals.
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CHAPTER 5: DEMODULATOR PERFORMANCE FOR UNKNOWN

DISPERSIVE CHANNELS

The performancg of adaptive demodulators using trans-
mitted reference channel measurements is considered. Exact
equations for the overall performance of the communication
systems are developed, and they are evaluated numerically
for several examples of interest. A study of the optimal
division of transmitter power between reference signal and
message is included as well. The results of these calcula-
tions point the way to a vastly simpler set of approximate
performance quations which give results in good agreement
with the exact results,

This approximate analysis provides analytical formulas
for overall system performance which are the basis of a sim-
plified design procedure, using assymptotic forms, for pre-
dicting the operation of dispersive channel communications
systems in terms of fundamental design parameters of the

system,

5.1 Assumptions

In this chapter we will consider only the two most prom-
ising demodulation systems for dispersive channels - the

optimal demodulator, and the high-SNR approximation to it,
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the minimum mean-square equalizer.l

For white additive noise,
which will be assumed throughout the chapter, the optimal

demodulator is given by

I

=1
* - % - *
=l:§_T§+%.¢1] gTZ_=Q1HTy ’ (5-1)

¥

the vector estimate of the'message. An alternate way of

th

writing the k component of (5-1) was developed in Section

3.4 using the pseudo-inverse.
_ -1
-~ ®T _*T *T 1
a = ¢, H |l H™ ™ + = {} Y . (5-2)

e B+ I

h

The vector Qk denotes the kt column of the normalized mes-

sage covariance matrix, LI
The optimal equalizer is just the zero-noise version of

(5"“2), i.e-'
" * k| *xi] "3
a = ¢kT H T[?,g‘ H ?] y = g?y ’ (5-3)

where ¢ is the vector of equalizer tap-gains.

In this chapter we will be concerned with systems for
which the true state of the channel is not known to the
receiver, but only an estimate, say H, of the true channel H
is available. Thus in (5-1) through (5-3) the channel-

dependent quantities must be replaced by their estimates.

lThese systems are optimal for known channels; for
unknown channels the strategy will be to use the same struc-
ture as for known channels, but substitute estimates of the
channel parameters for the channel dependent quantities. The
terminology "optimal" will, however, be retained.
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The channel estimates will be assumed to have been
obtained by an optimal transmitted reference measurement
system discussed in Chapter 4. Then the measurement errors
of .the individual channel tap gains are statistically inde-

pendent of each other, and will be independent of the message

and noise as well, for either time-division or frequency-

i

division multiplexing of the message and reference signals.
The measurement error covariance was given by (4-32),

Cov(h-h) = =— I , (5-4)
5

where Es is the energy of the reference signal within the
measurement interval, Tm' For a power-limited transmitter,
with power P_ available for channel measurement, the best y

choice of reference signals was found to be the class of

constant-envelope signals, for which

E =P _xT . (5=5) .

i
n
it

(5-6)

where "m is defined to be the input SNR of the measurement

system,
One last assumption which will be made is that the first

(or, in general, the largest) channel tap gain is known.
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This is done to account for the fact that any constant multi-
ple of the message is an error-free message estimate for pur-
poses of communication. The assumption of one known tap gain
mafhematically fixes the overall gain level of the channel,

and, in effect, simulates automatic gain control.

5.2 Exact Calculations of System Performance

The method used to determine the effect of noisy channel
measurements on system performance is to find the error vari-
ance as a function of the true channel state and the
receivers estimate of that state, and then average with
respect to the estimation error, or "mismatch." For a chan-

nel g, the optimal demodulator becomes
e 1 1....1 * “am] At
2=E1_£+r?f} £ y=0 /"y, (57
where the message SNR, g is defined to be
v (5 -8)

and P_ is the power devoted to transmitting the message. The
normalized error covariance, conditioned on the channel esti-

mate, is defined to be

=4

Ay & Le N[(@_—g) (é_—a)*'lj . (5-9)
o, ='-— -
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This will be called the channel mismatch function. Then the

overall performance of the system is obtained by averaging

with respect to &.

A& EpIAG)] (5-10)

Defining a measurement error matrix, or mismatch matrix, to be

0

g &

EL@ -1 (5-11)
we may write, for the optimal demodulator, :
A
(a-a) =él “*Tl-g
=g :g*T(gi +N) -0 g_] (5-12)

Performing the operations indicated by (5-9) we obtain the

channel mismatch function for the optimal demodulator.

)
d

A A - AR A -® w1 I~ -~
A(§)=QIE~£TQ+(QT§=+%—¢)o(l_ﬁ_zTg+%__ .}g
a

(5-13)

A similar procedure is used to obtain a channel mismatch

function, Ak(é), for the optimal equalizer, (5-3).
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= :=a k
~T
=c'[H a+N] - a (5-14)
- é 1 n 2
a
_ ~T 7 1 - T T
—1+g@3ﬁg_{= +ﬁ;£5 "ZReEiI—i-?-k_[ (5-15)

This mismatch function is then averaged over measurement
errors to obtain the overall equalizer performance, Ay e
‘e = Ep Dk”.‘)] (5-16)

Equations (5-13) and (5-15) are the basic formulas for
the investigation of the effects of channel measurement error.
Note that this error appears in a complicated, non-linear
fashion involving matrix inverses, so that the analytical
evaluation of the expectation with respect to é of these mis-
match functions is an intractable problem. Instead, numerical
methods were used initially to perform the averages of (5-10)
and (5-16) in order to observe trends and parameter depend-
encies. These calculations provided enough insight into the
problem to suggest a much simpler approximate performance
calculation which will be described in a later section.
However, let us first describe the numerical procedure used

to perform the "exact" calculations.
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It should first of all be noted that (5-13) and (5-15)
are not the most efficient formulations for numerical pur-
poses because of the special nature of the matrices involved.
(See Equations (2-26) and (2-35).) These matrices have many
zeroes in the "corners," and identical elements along diag-
onals, so that it is possible to develop special formulas
for the matrix products which take advantage of these proper-
ties to substantially reduce the number of multiplications
required., However, the details of these simplifications will
not be discussed here.

The numerical technique uses the integral form of the
expectation operation of (5-10) or (5-16). (Actually only

the diagonal elements of (5-10) were computed).

=

= Eﬁ{_A__(ﬁ)] = Jg(ﬁ) p(h) dh (5-17)

p(&) is the joint probability density function of the channel
tap~-gain measurements, known from Chapter 4 to be Gaussian
and uncorrelated, with mean values equal to the true values
of the channel tap-gains. This integral is over the Tc=nc-l
unknown channel tap gains (recall from the preceding section
that h) was assumed known) , so that it in general implies a
multiple integration., It was found that the complicated form
of the integrund, g(ﬁ), caused even double integral calcula=-
tions to be of astronomical dimensionality, so that this

"brute-force" approach was restricted to the case of




| 125
e

;g single-notch fading (Tc=l), for which g(é) is a function
only of a scalar variable, ﬁz.

If the input SNR, Nav and the true channel state are
fixed, then any diagonal element, Ak(ﬁz), of the mismatch

functions (5-13) or (5-15) is a function of ﬁz alone. A

piecewise~linear approximation to this function was generated

by the following algorithm.

1. Por the largest measurement errof variance
to be considered (-8dB), the 95 percent con-
fidence interval for ﬁz was computed.

2. The value of Ak(ﬁz) was computed at the end-
points of this interval and also at the mid-
point (h, = h,), dividing the interval into
two subintervals.

3. For each of these subintervals the value of
Ak(ﬁz) was computed at the midpoint and com-

pared to the midpoint of the straight line

connecting the values of Ak(ﬁz) at the end-
,% points.

4, If the resultant difference was more than
;ﬁ 2 percent of the true value of Ak(ﬁz), then
: step 3 was repeated for each of the new
subintervals.,

Since the mismatch function turns out to be reasonably

smooth, this nested-interval iteration procedure produces a
g predictably accurate piecewise 1ine§r approximation to Ak(ﬂzh

Once this approximation is obtained the actual integration in

e
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(5-17) is a straightforward calculation for any value of
measurement error variance smaller than the worst case indi-
cated in step 1.

5.3 Results of the Exact Calculations
of System Performance

Some examples of the results of these calculations of
the "exact" performance equations are given in Figures 5-1
through 5-4, The performance criterion is the reciprocal of
the average error variance, or output SNR, for that component
of the vector message estimate which the receiver would
regard as the best on the basis of the noisy channel measure-
ment. This is plotted as a function of the message SNR, Nyt
for various values of the measurement SNR, "me’ The curve
with anm=w is the limiting case of known channel state, and
the curve labeled "dispersion bound" gives the ultimate per-
formance for any system operating over the same channel, that
of the optimal demodulator with infinite observation interval
when the channel is known.

The examples of Figures 5-1 and 5-3 were chosen to illus-
trate the situation in which the length of the observation
interval, T;, is not a limiting factor over the ranges of
parameters considered, and may be regarded as infinite. This
is evidenced by the fact that SNR, is assymptotically propor-
tional to ", for the known channel, the sign of a system
limited by additive noise. Conversely, Figures 5-2 and 5-4
illustrate the situation where insufficient observation time

causes the system to be dispersion-limited as N, gets large.
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FIGURE 5-l. OPTIMAL DEMODULATOR PERFORMANCE FOR

7 dB BAND-EDGE FADING.
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In all these fiqures the curves tend to level-off and
approach an assymptote as n,**, SO that the gross effect of
channel measurement errors is seen to be another ultimate
performance limitation to be added to those caused by addi-
tive noise, incomplete equalization, and channel dispersion
itself., The dependence of the numerical values of these new
assymptotes upon the various design parameters of the system
is not at all obvious from the theory so far developed, but
the approximate analysis of the next section provides good
estimates.

Another feature common to all the Figures 5-~1 through
5-4 is the monotonic improvement in performance with respect
to both Ny and anm, but with decreasing rates of improvement
in each variable. Since Mg and n, are not independent, but
are constrained by the power limitation on the transmitter,
this behavior suggests the possibility of an optimal division
of transmitter power. Suppose the available power is P, that
é represents the fraction of this power devoted to channel
measurement, and that n denotes the total input SNR availab.e.

That is,

4

n= 3 (5-18)

N

Then we can express L and "m in terms of the power division

parameter 6 .

Y

n, = 2 = (1-68)n (5-19)

N
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o

$n (5-20)

=)
=}
2~ w

Then the optimal power division, $ is that choice of §

opt’
which maximizes SNR,.

A typical example of the dependence of performance on §
is given by Figure 5-5, for the same system and channel illus-
trated by Figure 5-~1., When the measurement interval Tm is
reasonably long, the system performance is remarkably insensi-
tive to power division; it is possible to devote only a few
percent of the transmitter power to channel measurement and
still achieve performance within 1dB of the optimum. Note
also the substantial improvement in maximum performance as T
goes from 1 second (a single pulse measurement) to 100
seconds (a long measurement sequence). Since, as pointed out
in Chapter 4, measurement time is quite cheap compared to
observation time, the measurement should be made as long as
possible, consistent with the fading rate of the channel,

A search procedure was used to optimize the power divi-
sion for many examples of single-notch selective fading, and
the optimal performance is tabulated in Tables 5-1 through
5-4, The numbered columns in these tables correspond to the
following system configurations.

1. The optimal demodulator with infinite obser-

vation interval and known channel state.

(The dispersion bound.)
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Optimal Demodulator, To= 10

- 7 dB. Band-Edge Fading
Markov Message

25

20
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FIGURE 5-5. AN EXAMPLE OF TRANSMITTER POWER
DIVISION.
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. The optimal demodulator, T0 = 10 seconds

10 seconds

2
3. The optimal equalizer, To
4

. The optimal equalizer, T, = 20 seconds
5. The optimal equalizer, T, = 30 seconds
The value of the optimal power division was found to lie in
the ranges below, for all entries in the tables.

0.38 < sopt < 0.58 , Tm =1

0.21 < ¢ <0.32 , T

opt 10 (5=21)

(1

0.08 < ¢ < 0,12 , T = 100

opt -— m

However, these optimal values were not at all critical, as
evidenced by Figure 5-5, which is quite typical of all the
cases considered in the tables.

Some examples taken from these tables illustrate the
general behavior of complete demodulating systems for unknown
dispersive channels., Figure 5-6 is a comparison of the opti-
mal demodulator and optimal equalizer under conditions such
that the length of the observation interval is not a limiting
factor. The optimal equalizer performance approaches that of
the optimal demodulator when the input SNR is high, but the
lack of post~equalization filtering causes significant degra-
dation for n small, the same behavior observed for known
channels. Note the crucial importance of the length of the
channel measurement, Tm' on overall system performance. For
Tm=1 (single pulse measurement) there is severe degradation
in performance relative to the case of known channel state

(Tmzw). However, if the fading rate of the channel is

p i 7. 5
i 7

% b .
3 : % y

i E

i

[
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sufficiently slow that the measurement can be performed over
an interval of 100 seconds, then the optimal demodulator can

be made to perform within 1dB of the performance for a known

channel. But this known-channel case is just the Cramer-Rao

bound on performance of any technique for communicating over

~ dispersive channels (Section 4.2), so that the transmitted-
reference technique results in very nearly fully-optimal
systems for demodulation if the fading rate is reasonably
slow {(one hundredth of the channel bandwidth).

Figure 5-7 illustrates the case where performance is

limited due to insufficient observation time. The remarks

made in reference to Figure 5-6 hold here as well, but there

is the usual flattening of the curves for large n caused by
incomplete equalization.

Figure 5-8 compares the optimal equalizer performance

% 2 : ;

for two different values of observation interval. The T;=10
case is identical to the dashed curves of Figure 2-7, for
which T, was a limiting factor. However, for T;=30 the
system is fundamentally noise-limited, as evidenced by the N
linear improvement with n. Notice that increasing T, when
the system is not limited by incomplete equalization (before

the T,=10 curves flatten out) causes some loss in performance,

an effect noted and explained at the end of Section 3.4.

Examination of many examples of these "exact" calcula-
tions of demodulator performance leads to the conclusion that
nothing startling happens for the case of unknown channels.

That is, the system's non-linear dependence on channel
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measurement errors does not appear to cause any threshold
effects or catastrophic breakdowns in performance, at least
for the reasonably small measurement errors considered. The
degradation due to channel measurement error is graceful, and
examining Figures 5-6 through 5-8 carefully, it can be seen
that increasing the measurement error (reducing Tm) merely
tends to push down the entire performance curve. (This is
not exactly true, but very nearly so.) Since this approxi-
mate behavior of adding a mere constant to thé estimation
error is a fundamentally linear effect, one is led to attempt
the linearization of the exact performance equations with
respect to channel measurement errors, and extend the analy-
tical results by approximation.

5.4 An Approximate Analysis of the Effect of
Noisy Channel Measurements

For the optimal demodulator the mismatch function was

given by (5-13):

* ~th
T QT

i

)]0
(5-22)

- - - -l
o = E_I.*Ti’f %__cb :{ (5-23)

~

The difficulty in averaging (5-22) with respect to h is
caused by the matrix inverses. Suppose that we take the

, . Al
linear variation of Q = with respect to the measurement error

matrix E. That is, if H = H + ¢E, then the first variation
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- Al

of §= with respect to E is %;»Q

e =0

-1 -
= -0 Q
€ =0 - E%?_~
-l

% * -
= -0 :@TE+QT§=]QI (5-24)

A..l ~ o -~ a_l
g; Q o -Q IE;; é}Q
€ ==

Thus, to a first approximation,

Q-'l . 9:1 _ g-l E{*T B+ E:T H;{g"‘ . (5-25)

If (5-25) is then substituted into (5-22) and all terms higher
than second order in E and % are neglected (both are presumed

small)we obtain

a2 L [Q“ -t @ e g w o7

o
|

i
s

"'%“Q-l” teTpe e no! . (5-26)

Now the measurement error appears in a simple way, and the

average of A(é) with respect to é may be carried out analyti-

cally.

- 1 -1 -1 kp T & -]
A = Ej(AWR)] = N Q" +Q  H (EQE ) (5~27)

iz
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This same result can be obtained by a different approach to
linearization - assuming that the mismatch occurs in the
actual channel. That is, fix the demodulator and average

over an ensemble of mismatched channels rather than f£fix the

channel and average over an ensemble of mismatched demodula-

tors. In this alternate approach the mismatch matrix E
“g appears linearly at the outset.

[
To illustrate the second method consider the optimal

i equalizer, (5-3).

~ *T *T *T -1
ak“‘ﬁ(*i[ﬂ.; i]1=T1 (5-28)

i Putting the mismatch in the channel we have

B y=Ha+N=(HL+Ea+N (5-29)

so that

i

-] — -]
_ ®P AT *T - Ak 1 ] *T']
R T I P LR [

k|
4

1
i

i

xp k[T *p ~ kP AT x| 1
-gki‘}?;al.i_] ﬁik-iki[f_isgaﬁ__] by .

(5-30)

"

Taking the average of (5-30 with respect to h, and noting

| that the measurement errors have zero mean, we obtain the

average error variance for the optimal equalizer.
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- -1
_ R A - - *T *T *T
Mg = Eg_l}k(!l)_ =1l-¢ B (:i &L 1 ] Hoyp

*
T g:T

+
JIH

* I *o —2
5 He H ] H ¢, (5-31)

a

-1
*T *T *T -1 *jq
i [2 22 2] [ NITEE ™

This unwieldy expression is considerably simplified by using
(5-28) to identify ¢, and (3-65) to identify the equalization
error, cZ(TO).

A = e2(Ty) + T % 4 ET‘-‘;‘ e g_*T]g_* (5-32)

a
Both the optimal demodulator performance, (5-27), and

the optimal equalizer performance, (5-32), require the matrix

[é gaE*f]. For uncorrelated, zero-mean measurement errors

. , ' ~1 . .
with variances (anm) » and assuming a has stationary covar-
iance,l it can be shown using the matrix definitions (5-11)

and (2-26) that

T
*p| - _C (5-33)

Thus the approximate performance of the optimal demodulator

is

1All elements of each diagonal of $, are identical. (ga
is a Toeplitz matrix).

)
]

e
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- T -y k -
=g e S oMy mo (5-34)

a m'm
and the performance of the optimal equalizer is

2 1. 7+, To ¢

A = (Ty) +# —c" ¢ + —p—c” o c*. (5-35)
a m m

Comparing these equations with the corresponding expres-
sions for the case of known channels in Section 3.5 shows
that the noisy channel measurements are accounted for by an

additional term,

HQ (5-36)

3
3
e
d;e

c* (5-37)

for the optimal equalizer. Both go to zero as the measure-
ment error, (anm)-l, goes to zero.

Equations (5-34) and (5-35), obtained by linearizing the
dependence upon measurement error, have been found to be in
good agreement (within 1 dB) with the results of the "exact"
performance calculations of Section 5.3 for reasonably small
measurement errors (anm > 104B) . Although, because of the
extreme dimensionality of the exact performance equations,

the two methods could be compared only for the case of
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single-notch fading, (Tc=l), it is felt that (5-34) and (5-35)
are valid for higher-order channels as well; the degradation
due to imperfect channel measurements is simply proportional
to the number of unknown channel tap gains, a perfectly logi-

cal result.

5.5 The Infinite-Interval Approximation

Equations (5-34) and (5-35), although vastly easier to
evaluate than the exact performance equations, nonetheless
require matrix inversion because they still retain the “exact"
dependence upon observation interval. Yet more simplifica-
tion is possible if we assume, in the manner of Section 3.5,
that the observation interval merely puts an upper limit on
system performance through the equalization error, ez(TQL and
that below this limit the observation interval may be regarded
as infinite since the system is fundamentally noise-limited.

For T, == the optimal demodulator is a filter, f(t),

satisfying Equation (2-21).

j R Oy =h,) £(t-dy) dh, = R (y=t) . (5-38)

- 00

Then, putting the measurement error dependence into the chan-

nel state, the message estimate is

a(t) = £(t) ®h(t) ®a(t) + N(£)], (5-39)
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for which the average estimation error can be shown to be

=00 QO

E Ja(e) - a(t)|° =r_(0) - I [ £(0) £ ()R (4, -1,)d),d),

=00 w00

(5~-40)

o

J £ £XOLR (A =2p)dx,ddy,

D 0D

+
3
(o]
Mooy

and where the expectation has been carried out over message,
noise, and measurement error. Rewriting (5-40) in terms of
Fourier transforms with the aid of Parseval's formula and

Equation (2-23) for the Fourier transform of f(t) we obtain

. T S (w) S, (w)

El:la(t) - a(t)lz] = %-; [ a B duw
. Sa(w)lH(-jm){ +SN(w)
(5-41)
" 3 . 2

TC l Sa (l&)) 'H("Jm)l
+ n T - 2-;[_ I ) zdw.

m m - [Sa(w) JH(=3w) |~ + SN(w)]

Recognizing that integrals of this type are most easily
carried out in the z domain using residue calculus, we
replace (5-41) by its z transform analog, letting Ra(z) denote

the z transform of the normalized message autocorrelation.

If, at the same time, we include the effect of finite T, by
adding in the equalization error ez(TG), the following
approximation to the optimal demodulation performance is

obtained.
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1 [ - 7] 1 1 1 dz
= Ella(t) - a(t)] = e o é — —
ol A7 T e w i 2R (@ 2
a
(5-42)
-1
. Tc 1. é Ra(z)H(z YH*( 2) §£-+§(T)
anm 2713 [?(Z'I)H*(z)+ l_ R_l(z{}z z a
n, a

This expression, although it may not look simple,
requires only algebraic manipulations if sZ(TO) is estimated
by the method of "equivalent single-notch channels" described
in Section 3.5.

Recalling that the optimal equalizer is just the assymp-
ﬁotic form of the optimal demodulator as UFe L its perform-

ance is given by the assymptotic form of (5-42).

1 [ZA 3 1 1 1 az
L oellaw) - ay (%] = L § dz
o2 "a "3 J iz lypr(z) 2
(5-43)
T R_(2)
c 1 § a dz sZ(T )
"mim 2"3 ) m(z yu*(z) 2 0

Comparing these last two equations for unknown channels
with (3-68) and (3-69), for known channels, the effect of
noisy measurements is seen to be accounted for by the middle
term in (5-42) and (5-43). Since the performance curves are
known to flatten out as né+w(see Figures 5-1 through 5-4),

an estimate of the resultant assymptote is now known to be
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Tc

1 é Ra(2)
Nl 2n3

dz
Tz

(5-44)
H(z™!) H*(z)
so that families of measurement error assymptotes can easily
be drawn for design purposes in the manner of Figures 5-1
through 5-4. The other required assymptotes were already ,
known from Section 3.5, Thus we have a complete quick-design
procedure based on assymptotic forms, similar in nature to

the Bode plots of control theory.

5.6 Optimal Power Division

Equations (5-42) and (5-43) may be used to obtain a sim-
ple approximate formula for optimal power division, discussed
first in Section 5.3. 1In principle, all one has to do is
substitute (5-19) and (5-20) for s and "m respectively into
(5-42) and (5-43) and minimize with respect to 6. The opti~
mal 6§ will then be a rather complicated function of the chan-

nel state, message spectrum, total SNR, n, T_, and Tm‘ This

c
is undesirable since a feedback link would be required to
inform the transmitter of the state of the channel. However,
as was pointed out in Section 5.3, the optimal power division
is not at all critical (Figure 5-5), especially if ;% >> 1,

A simple "rule of thumb" for optimal power division which lies
within the ranges given by (5-21) and is independent of

channel state, message spectrum, and n is obtained by assum-

ing a white message spectrum in (5-43) (i.e. Ra(z)=l). The
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resultant division of power, if not precisely optimal, is at
least very good.

Substituting (5-19) and (5-20) into (5-43) with Ra(z)=1

we obtain

1 EDé(t)-a(tHz] I N D R R § \ az

;g n | (I=%) dTm 2% H(z™')H* (2) z
+e(T) (5-45)

Minimizing with respect to é§ we easily obtain

- 1 -
6op‘l; = — ’ (5-46)
R Tm ° Tc

a simple formula agreeing well with (5-21) for Tc=1.

Assuming that this expression gives a "good" division of
power we substitute for N, and "m in (5-42) and (5-43) to
obtain formulas for overall system performance. For the opti-

mal demodulator the performance is

1 R
;g Var{a(t) - a(t)) =

)
1 é 1 daz
=
'z o

H(z Y )H* (2) +
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v/ -1 Y, -1, -1
. ToTh (1+ TC-Tm ) 1 § H(z )H*(z)Ra(z) dz
n Zn3 / | z
-1 (1+ Tc-Tm ) -1
H(z "YH*(z) + Ra (z)
2
+ € (To) ’ (5-47)
while for the optimal equalizer we have
1 . (I+7°T T ") 1 dz
=5 Var(a(t)-a(t)) = —r TR & —3 ~5
ol 3T (27 Yyu* (2)
' -1 Y -1
Tc'Tm (1+ Tc'Tm ) 1l Ra(z) dz 2
+ - o —3 — te (Ty) . (5-48)
IV (zTyH* (2)

These equations for the overall performance of demodula-
tors for unknown dispersive channels are known to be reason-
able approximations to the actual performance for single-
notch selective fading, the only case for which exact results
were available, and they appear to be reasonable for higher-
order channels as well. They are simple to evaluate given
the gross design parameters of the system: demodulator
observation interval, T,, which determines system complexity;
total SNR n, determined by the available transmitter power,
receiver noise figure, and channel attenuation; measurement
time, Tm' linited by the channel fading rate; and channel
delay-spread, Tor dependent upon the transmission medium and
signalling bandwidth. For purposes of design, a worst-case

analysis could be performed, the worst case taken to be a
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single notch fade at the peak of the signal spectrum. This
approximation procedure provides a starting point for the

practical design of dispersive channel communication systems.

i
i
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CHAPTER 6: CONCLUDING REMARKS

6.1 Summary and Conclusions

3 In Chapter 1 several questions about the demodulation of
o signals passed through selective-fading channels were posed.
fj An appropriate summary of this research is an attempt to

} answer these questions.

;j 1. First of all, the channel is assumed to be a
bandlimited, slowly time-varying, selective
fading channel described by a tapped delay-
line channel model whose parameters are

stationary over time intervals consistent

with the rate of fading.

2. The optimal demodulator for analog communica=

I—-

tion over this type of channel is developed

= using the technigue of maximizing a-posteriori
probability. The receiver structure obtained
}> for non-linear modulation is found to defy
practical implementation (and analysis as well)
in its derived form, so the research is

restricted to consideration of linear passband

recovery of the transmitted signal, an opera-
)‘g tion both practical and amenable to analysis.

Wiener-Hopf methods are used to obtain the

s
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minimum mean-square-error demodulator, using
an integral formulation to study idealized
systems which are assumed to observe the
entire past and future of the channel output,
and a sampled-~data formulation to investigate
more realistic systems having finite observa-

tion time.

It is found that channel dispersion pro-
duces an intrinsic loss in performance rela-
tive to non-fading channels. That is, no
amount of sophisticated signal processing “J
can completely 6vercome the effects of dis-
persion. It is also found that the length -
of the observation interval limits the per- TZ
formance of the demodulator for high SNR
whenever fading is severe. mj

The optimal dispersive channel demodula-

il

tor turns out to require some rather sophis-

ticated filtering operations which are not

i 5
Nguiissii

easily adapted to different channel states,
hence expensive to mechanize. Consequently, fi
effort is devoted to the consideration of
suboptimal approximations to the optimal

demodulator which use transversal equalizers

based on a zero-noise assumption. Such
equalizers were known to be practical from

the literature. A novel approach to the
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performance analysis of zero-forcing and min-
imum mean-square error equalizers leads to
the conclusion that the latter equalization
algorithm works significantly better than the
former for severe fading channels. In addi-
tion, it is found that the dependence of
equalizer performance upon its observation
interval or length (hence cost) is basically
governed by that zero of the selective-fading
channel which is closest to the unit circle
in the complex Z plane. Thus, for purposes
of approximating the equalization error, high
order dispersive channels can be reduced to an
equivalent single-notch channel.

An investigation of the performance of
equalizers in the presence of noise shows that
the optimal equalizer is a near~optimal demod-
ulator under low-noise conditions, but that
there is serious degradation when there is
much noise; the zero-forcing equalizer works
considerably less well, A study of post-
equalization filtering techniques to improve
the low SNR performance leads to the negative
conclusion that they are not worthwhile: only
the exact optimal demodulator works well for

low SNR.
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Finally, putting together all the results
for known~channel demodulation, it is found
that the general performance of the optimal
demodulator and optimal equalizer may be
approximately described if the assymptotes of
the performance as the noise goes to zero, and
as the observation interval goes to infinity,
are known, which they are from previous results
of this research. This makes possible a graph-
ical design procedure similar to the Bode dia-
gram of control theory.

When the channel is unknown, it must in some
way be estimated in order to effectively demod-
ulate the message. Two different channel meas-
urement techniques are considered: channel
estimation using the message alone to probe

the channel, along with its a-priori statistics;
channel estimation making use of a special
reference signal known in advance to the
receiver. The former technique is desirable in
that all transmitter power is devoted to infor-
mation transfer, but it is found to be imprac-
tical for ahalog communication. However, its
ultimate performance is given by the Cramer-Rao
bound, a useful theoretical result for judging

the actual performance of transmitted-reference
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measurement systems, systems which are quite
easy to build.

Joint optimization of the channel state
estimate and reference signal, subject to a
power constraint, gives a reference signal
optimality criterion which is exactly satis-
fied by certain classes of pulse signals and
approximately by many other classes., Consid-
eration of transmitter peak-power limitations
and ease of generation indicates that PN
sequences although suboptimal, make admirable
reference signals, forveither periodic or
aperiodic measurements.

Imperfect éhannel measurements affect the per-
formance of transmitted-reference‘communica—
tions systems of the estimator-correlator type
in a complicated, non-linear way. Numerical
methods are used to investigate system per-
formance for single-notch selective fading
channels, the only computationally feasible
case; the results show that the basic effect
of noisy channel measurements is to increase
the effective equalization error, the assymp-
totic demodulator performance as the additive
noise goes to zero. Optimal division of trans-
mitter power between reference signal and

message is studied as well, It is discovered
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that this optimum is not at all critical,

and that if the fading rate of the channel per-
mits long channel measurements, only a small
fraction of the transmitter power need be
devoted to chahnel measurement, making the
transmitted reference technique very nearly
fully optimal in the sense of the Cramer-Rao
bound on performance. In addition, the overall
system performance curves (optimized with
respect to power division) are, for different
values of measurement error, found to be very
nearly mere translations of one another along
the performance axis. This suggests a
linearized performance analysis to find the
appropriate constant of translation.

Equivalent linearization of the system depend-
ence upon channel measurement errors provides

a reasonably accurate estimate of the effect

of these errors on system performance which

is far simpler than the exact performance com-
putations. An additional approximation which
isolates the effects due to finite observation
interval from the effects of additive noise and
channel measurement errors permits the descrip-
tion of overall system pefformance in terms of
easily~-computed integrals which determine the

assymptotes of the performance curves.
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These assymptotes may be used for a graph-
ical design procedure to provide quick estimates
of the performance of dispersive-channel commun-
ications systems Suitable for "first-cut" design
or parametric studies. Only fundamental system
parameters are retained: observation interval
(equalizer length); receiver noise figure
(noise power); channel delay spread; measure-
ment interval (fading rate); transmitter power;
signal power spectrum; channel state (could be
accounted for on a worst-case basis).

Finally, a "rule of thumb" for transmitter
pwoer division is developed which depends only
upon the gross channel parameters of delay
apread and fading rate; this division of power
provides nearly optimal performance without
requiring a feedback link from receiver to

transmitter.

6.2 Some Areas for Further Research

161

In the course of this research three topics for future

research suggested themselves, but were not actively pursued.

1.

There must be a better optimality criterion for
non-linear, bandwidth-expanding modulation
systems operating over dispersive channels
than either MAP or minimum mean-square passband

equalization. Both these criteria require



passband delay lines with bandwidths much
wider than that required by the message

itself. It would be eminently desirable from a

practical viewpoint to perform the equaliza-

tion on the message estimate at baseband, per-
haps in a non-linear way, or preceded by a non-
linear device. A new criterion which somehow
constrained the delay line to operate at base-
band would be of great interest.

The fact that equalizaer performance is
governed by that channel root closest to the
unit circle in the Z plane suggests an inves-
tigation of the distribution of channel roots
for a statistically described channel, In
testing this principle by random examples

some feel was obtained for the problem, but
was purely qualitative and empirical. It
would be interesting to find the effect of

the channel correlation bandwidth and multi-
path intensity profile [1l] on this distribu-
tion,

This research assumed that the channel was
stationary over a given time-interval. A
direct extension would be to assume a first-
order time variation (that is, assume a
channel impulse response of the form

h(t)=hy(t) + th;(t) and find the optimal
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demodulators and channel estimators based on
this assumption. Although rate estimators
are as a rule inaccurate, perhaps the overall
system dependence is relatively insensitive
to this type of error. In any event, the
unpalatable fact of channel time-variation
would be explicitly accounted for, and some
fears about the effects of non-stationarity

could possibly be laid to rest.
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APPENDIX A

DERIVATION OF THE MAP ESTIMATE

In Section 2.2 the generalized MAP optimality criterion
was defined to be the minimum of the functional &2 given by

(2-11) *

e = [ [ R (u-t) [y(w) - x(w)]ly(x) - x(v)]*duds
TT

(A-1)
+ [ [ rR-'O-t)a(yar(r)ards
T, T, a

This functional is optimized by a variational procedure., Let
a(t) = a(t) + on(t), where a(t) is the optimal estimate of

a(t), and n(t) is an arbitrary complex perturbation. Then
1

a(t) is the solution to the variational equation

g;-ez(c) 0=0 ' (A-2)
g=
Noting that
dx(t) = & [ h(x-n)s(a,ax
=0 T
a
. (A-3)
= | h(t—l)aS(:'l) n(x)dx -,
Ta a=a

lgee reference 46, Chapter 4.

)
{
.
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and making use of the Hermitian symmetry of the covariance

-operators, we obtain

0 = dez
O .-
o=0

= 2Re| n(A)dA<§ R;I(A—T)é*(T)dT
T T
a a

(A~4)

du),
a=a

- {lR&l(U"'T) [Y(T)-;((T)]*d’rélh(u“l) as(gé)\)

where
x(t) = h(t) ® s(a,t).

Equation (A-4) must be satisfied for any arbitrary complex
perturbation n{i); since both the real and imaginary parts of
n{1) can be chosen independently, then both the real and
imaginary parts of the term in braces in (A-4) must be iden-

tically zero. That is,

| R (-nar(nar

Ta

(A-6)

= | [n(u-0 282 Bl gy fy (1) ~x (1) 1*drdu
TT a=a

for all XeT,. Convolving (A-6) with the positive definite
operator Ra and noting the resultant identity on the left-

hand side we obtain
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a*(e) = [ [ [ R_(t=a)h(u-y) 28{20)

Ja A
Ta TT ja=a

« Ry (u=1) [y (1) =k (1) 1*dudrdr (A-7)

This can be written more conveniently as

2 _ 9s*(a,r)
a(t) = '{‘<h*('t) @ Y w—

+ [ Bu-1) [y () -k(u) Jau (A-8)
T

teTa .

This integral equation, (A-8), is a necessary condition for

the_MAP estimate.

o

7
|
1
ol

—1
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APPENDIX B
THE EQUIVALENCE OF THE MAP AND MEAN SQUARE ERROR CRITERIA

FOR LINEAR MODULATION

= For linear modulation the MAP estimate of a message -
”; transmitted over a known dispersive channel is given by

(2-12) to be

at) = I [L*(T) ® R;(t-r{]dr f R:™ (r-u) [y (w) -k (w)lau  (B-1)
T T

= [ R, (1-t)dt J R;]l (u-1) [y (u)=-x(u)] du (B=2)
T T

for tsTa. Defining the function a(r) to be

| S

, g(t) = I R&l(u—r){y(u)-i(u)ldu (B-3)

and operating on (B-3) with the noise covariance function,

4

Ry, we find

I gl(r) RN(T-t)dT = y(t)=-x(t) (B~-4)
T

Then (B-2) can be written
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a(t) = I g(r) R, (r-t) dr (B=-5)
T

Operating on both sides of (B-5) with the channel impulse

response, h(t) , we obtain

x(t) = h(t) ®a(t) = { h(t-2) a(r)da

Ta
= j h{t-1)dx { gl(r) Rax(T-A) dr 3
T T
: |
= I g(t) dx f h(t-1) Rax('r—A) A g
T T
a |
,,,,,, )
= I g(t) R, (1-t) dt (B~6) o
3 J

The last equality above comes from the general proper-
ties of random signals passed through linear systems. Sub-

stitution of (B-6) into (B-4) gives

y(t) = x(t) + J g(1) RN(r-t) dz
T

I g(t) E{x(r-t) + RN(T—t)]dT
T

{
=

I g(t) Ry('r-t) dr (B=7)
T

i
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Equations (B-5) and (B-7) together define the MAP estimate.
Now suppose that d(t) is the minimum mean-square error

estimate of a(t) given by (2-20) and (2-21),., That is,

a(t) = [ f(t-2) y(x) di, (B-8)
T

where

T ’ (B-9)

Then, using (B-7) in Equation (B-8),

at) = J ft-My(n)dr = J f(t-2)da 5 g(T)Ry(TﬂddT
T T T

= f g(r)dr J f(t-A)Ry(T-A)dA . (B-10)
T T

Making use of (B-9) and then (B-5) we find

a(t) = J g(1) R, (1-t)dr = a(t). (B-11)
T

Thus the minimum mean-square error estimator and the MAP

estimator are the same.
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APPENDIX C
EVALUATION OF THE OPTIMAL DEMODULATOR PERFORMANCE FOR

SINGLE-NOTCH SELECTIVE FADING

The performance of the finite observation interval opti-

- mal demodulator was given by the error covariance matrix,

—_ , -1

_ 1 - _1 -1 1 *P -1 1 -

A=>zCoviag-a)l =50 =5 |0 ¢ H+3 i’a] . (Cc-1)
a
For single-notch fading the channel is given by
+juwy .
4 _ -Jw :
H(jw) = h +he Jv -l -re e : (c-2)
’ 1412

Note that the following identities hold if we make the defi-

nition

A Y
p = |hh}| = Tz - (C-3)
v 2 Y 2
2 1+ 1-4 2 -'1-4
In,|* = 22280 |p,|" = 12 22%P (C-4)
2
h2 :

£ .
S
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2
1"+ |n,1° = 1 . (C-6)

1

If the additive noise is assumed to be bandlimited and white,

¢y = Ly it is possible to develop an analytical expression

for the diagonal elements (error variances) of A. For a

white message spectrum we have o= = I, while for the Markov

=a
o -1 :
‘% message source of Section 2.5, ¢, is the tri-diagonal matrix
V of Equation (2-35). 1In either case the matrix Q of (C-1) is
a tri-diagonal matrix of the form
«~  2 c* e e 0]
c 1 ’
g.-_-K ’ ° . v (C"7)
. 1 c*
0 - - . c b

where the parameters a, b, ¢, and K are identified in Table
f c-1.
Let us now suppose that the observation interval is of
" length T, =m seconds, so that Q is of order m+l, and is a

function of m.

Q = Q(m) (c-8)

»

Now define the following determinants of arbitrary order n.
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a c*
c 1
A(n) = det
1
_p c
1 c*
c 1 .
B(n) = det . L
1
| 0 c
1 c*
c 1 .
D(n) = det . .
. 1
Lp c
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(C-9)

(C-10)

(C~-11)

Then, using elementary row operations, the following recur-

sion formulas involving these determinants may be derived.

A(n)

B(n)

D{(n)

Also,

to be

det Q(m) = k™ a B(m) -
= k™1 p A(m - Icl2 A(m-

a D(n-1) - |c|2 pD(n-2), A(0)

b D(n-1) - |c|® D(n-2), B(0)

D(n-1) - |c|2 D(n-2), D(0) =1,

th

the i diagonal cofactor of the

2

le]l” B(m=1)]
11
l, A(l) = a.

1, B(l) =Db,

matrix Q(m) can

(C=12;

(C-13)

(C~-14)

(C-15)

be seen
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K™ A(i-1) B(m-i+l), (C-16)

so that Cramer's rule may be applied to evaluate the diagonal

elements of A.

(A].. = L . KLAG-1) Blm-i+l)
=ii T o det Q{mj
(C-17)
1 A(i-1) B(m-i+l)

=

" aB(m - Icl2 B (m=-1)

Both A(n) and B(n) in (C-17) are given in terms of D(n), so
we seek a closed-form solution for D(n). Examination of
(C-15) reveals that D(n) is the solution to a second order,
linear, homogeneous difference equation which may be solved
by standard techniquesl subject to the initial conditions
which are given,

———e 1 ——e 41
(1+71-4|c|?) - 1-"1-4|c|%)

n+lvy 2

D(n) (C-121

2 l1-4 ¢

Thus the error variances for the optimal demodulator are
explicitly determined as functions of the observation inter-
val,

In Chapter 3 it is desirable to find the performance of

the optimal demodulator as the noise goes to zero (n » =),

1Van Der Pol, B.,H. Bremmer, Operational Calculus,
Cambridge University Press, London, 1964, Chapter 13.

)
|
o
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In particular, we are interested in the (m+1)St diagonal ele-

ment of A, which, by (C-17), can be written

1 A(m)
{A(m)) = .
m+l, m+l Kn a B(m) - |c|2B(m—l)

2 (C-19)
a D(m-1) - |c| D(m-2)

ab D(m-1) - (a+b) |c|’D(m-2) + |c|"'D(m-3)

2

After considerable manipulation, and using (C-15), it can be

shown that

1 D{(m) - K, (n) D(m-1)

1
e {(D(m) - K, (n) D(m-1)]

l - Kl (n) DL {C-20)

where K, (n) and K,(n) are functions of n with the assymptotic

forms below.

2

lim K, (n) = |h,]|

- (c-21)
0 , White message

lim K, (n) =

N+ XZ [?+2¢C05w€], Markov Message
l-x y

(c~22)

Using (C-18), (C-3) through (C-5), and Table C-1 we obtain

the following:
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lim D(m-1) _ (1471-402)™ - (1-"1-452)™

n+o D(mi =2 - /

(1471-202) ™1 (1714, 2)™1
(C~-23)
2m
L
o h) 1 S
= 7 2 (m¥1 2 2 (m+1
lhll h, ( ) Ih, 121 -r (m+1)
h,
Thus, for the white message source we have
2m
2 A L. - _1-r
ewm = LM Ay a1 = 1 - 73D
nre - (C-24)
_ 2, m 1 - r?
B

while, for the Markov message source, the mean square error

is

ea(m)

e

(™ £ 1im (Al pyy = X 2
w ’ 1+ x+2p Coswy | f1-e° (m)
n-+ -x? [ j [ w ]

1
(C-25)

The subscripts w and M stand for white and Markov message
sources respectively. If the observation interval, T, = m,
is sufficiently large, then the mean square error for the

white message, e;(m), will be small,

e; (m) << 1 ,
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so that the error for the Markov message is approximately

2
e. (m)
w (C-26)

e (m 2 =
1+ I X + ZQCOSw{J

1-x

Thus there is an improvement or degradation in the Markov

message case relative to the case of a white message: this

factor is seen to depend upon the fading depth (through p),
and upon the placement of the fading notch, P but is inde-

pendent of the observation interval.

i
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APPENDIX D

PN SEQUENCES WITH SMALL APERIODIC AUTOCORRELATION

Table D-1 is a listing of that cyclic permutation of a
PN sequence of length T (given in the left-hand column)
which has the smallest possible out-of-phase autocorrelation
in the vicinity of the origin of the delay axis. Table D-2
gives the corresponding autocorrelation values. Note that
for the longer sequences the autocorrelation is essentially
zero (relative to the peak, hence near-optimal for channel
measurement. Consequently, it is possible to make long,
aperiodic channel measurements with easily-generated constant

envelope signals and achieve very nearly optimal performance.

‘‘‘‘‘‘‘‘
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